COMPUTATIONAL THINKING AND ALGORITHMS

PART 1: COMPUTATIONAL THINKING

Choose two statements which are TRUE about computational thinking.

- □ Computational thinking is for people who work in science
- □ To use computational thinking means that I know how to think like a computer.
- □ To use computational thinking means only that I can make a computer program.
- □ To use computational thinking in practice, I need a computer.
- □ Computational thinking is basically solving different problems.
- □ To use computational thinking I must understand how a computer works.
- □ With computational thinking we look for answers to the questions: WHAT, HOW and WHY.

Match the steps of computational thinking with their descriptions.

C	breaking the main problem into many easier problems
c	looking for similarities between our problem and a similar problem for which we already know the solution finding important parts and ignoring unnecessary
	parts
C	developing an algorithm
C	checking our algorithm if it is correct and if it can be improved

 \diamond evaluation \diamond decomposition \diamond finding patterns \diamond abstraction \diamond algorithmic thinking \diamond

PART 2: ALGORITHM

Algorithm is an instruction with which we solve a ______. Usually it is written as a list of ______, which lead to solving of this ______. How detailed the steps are depends on who is going to follow the algorithm: a person or a computer.

Find two more examples of algorithms for a task that we can learn in real life:

- tying shoelaces
- _
- -

When we talk about an algorithm for a computer, we are talking about a

A computer reads the steps from ______ to _____. Sometimes a computer can ______ them many times over. Sometimes it doesn't follow them if the right ______ isn't met.

We can present an algorithm graphically with a ______.

(picture below)