

Correct answer is nr. 4 .
Nr. 2 "At each height, the potential energy is inversely proportional to the kinetic energy" is wrong! This would mean their product is constant, instead it is the sum which is constant!
3) Simon is pushing a 3 kg box on a horizontal floor without friction, applying a force of 13 N in a direction that forms a 77° angle with the floor. If Simon is doing a work of 27J, how much does the box move?
(9 isposte)

Correct answer: 9,2 m. Here you did very well!!
4) Carlo is quickly climbing the stairs with a speed which is 2 times the speed of Giulio. What can you say about their kinetic energy?

This is a tricky question because you don't know the masses of Carlo and Giulio, so the correct answer is $n .4$ (The available info is not enough)
5) Three rubber balls weighing $\mathrm{m} 1=0,17 \mathrm{~kg} \mathrm{~m} 2=1,0 \mathrm{~kg}$, $\mathrm{m} 3=1,5 \mathrm{~kg}$, are dropped from the same height without any friction. How are the heights of rebound?
(10 risposte)

Correct answer nr. 1 . Most of you were right !! If there is no friction then the mechanical energy is conserved so the balls will rebound at the same height from which they were dropped!

Correct answer is $1,07 \mathrm{~m}$.
If you conserve energy, at the beginning there is only kinetic, at the end there is potential and some kinetic left, you get: $h=(25-4) / 2 g=1,07 \mathrm{~m}$ You don't need the mass of the object to answer.

Correct answer: NO. Most of you were right!!
Total energy at point $\mathrm{A}=$ kinetic + potential $=12,5+49=61,5 \mathrm{~J}$
Potential energy at point $B=98 \mathrm{~J}$, too big!
10) An object is launched upward a) If the friction with the eir is ignored, its
mechenical energy is conserved. in which points the kinetic energy has its
largest value?

Well done! Most of you were correct in all three subquestions a), b), c).
7) You throw a bouncing ball to the ground with an initial speed of $5 \mathrm{~m} / \mathrm{s}$. If there is no friction, will the ball reach the same height as it was thrown? Motivate your answer. (日risposte)
No because it also depends to the mass and the speed

No because it also depends on the speed and the mass
Yes because there is no friction so it will lost no speed.
It depends on the angle value between the ground and the launch directio
No because some of the kinetic energy of the ball is lost during the collision with the floor
and the ball will not return to the original height.
Yes. Indeed, if there is no friction, the energie rest the same.
Yes, it can be reach this point because there is no friction so the speed don't change.
no, because my boucing ball has inital speed not equal to zero. the height reached is higher.

Correct answer: NO
The explanation given in the last answer for on of you is perfect!
9) A horizontal force of 20 N is applied to a 3 kg box at rest. If the box moves $1,5 \mathrm{~m}$, what is the final speed if there is no friction?
(10 risposte)

Correct answer: $4,47 \mathrm{~m} / \mathrm{s}$. Most of you were right!!!
The work done on the box is 30 J and this is its kinetic energy!
11) A plane with a mass of 400 metric ton is flying at an altitude of 3000 feet (one foot $=0,305 \mathrm{~m}$) with a speed of $600 \mathrm{~km} / \mathrm{h}$. a) What is the potential (one foot $=0,305 \mathrm{~m}$) with a speed of $600 \mathrm{~km} / \mathrm{h}$. a) What is the potential energy of the plane?

b) What is the linetic energy of the plane? ou-cu-

You are very good at conversions! Almost all perfect answers!

Correct answer: Work $=\mathrm{F}^{*} \mathrm{x}=2,7 \mathrm{NX} 0,45 \mathrm{~m}=1,2 \mathrm{~J}>1,0 \mathrm{~J}$
13) If you let two objects with different masses fall, which one arrives to the ground with the largest acceleration (neglect friction)?
(10 masporte)

15) A monkey takes a banana and climbes to a branch above him. The branch is distant $4,70 \mathrm{~m}$ and the monkey uses a work of 201 J . What is the mass of the banana and the monkey?
(10 risposte)

Correct answer: $4,34 \mathrm{~kg}$. Well done, most of you were right!

Correct answer: 7 W
This was not easy! You can calculate like this:
Work $=\mathrm{g}^{*} \mathrm{~m}^{*}(\mathrm{~h} 1+\mathrm{h} 2+\mathrm{h} 3+\mathrm{h} 4)=$
$9,8 * 3,5^{*}\left(0+0,082+2^{*} 0,082+3^{*} 0,082+4^{*} 0,082\right)=9,8 * 3,5 * 0,82=28,1 \mathrm{~J}$
Power= Work/time $=(28,1 \mathrm{~J} / 4 \mathrm{~s})=7 \mathrm{~W}$
14) Determine the total power required for stacking 5 bricks of mass $3,5 \mathrm{~kg}$ 14) Determine the total power required for stacking 5 bricks of mass $3,5 \mathrm{~kg}$
on top of each other, where each has a height $8,2 \mathrm{~cm}$. The average time is 4 seconds.

THANK YOU VERY MUCH FOR PARTICIPATING

 TO THE QUESTIONNARIE.YOUR THE RESULTS WERE RATHER GOOD !!

HOPE YOU HAD FUN AND MAY BE REFRESHED SOMETHING ABOUT ENERGY THAT YOU DID NOT REMEMBER ANY MORE!

