

1!th September 2019

Data analysis of solar measurements

Aims:

Data analysis and modelling of the solar panel voltage, speed and power.

Done at the google form: https://forms.gle/En6dE31nEdbfCnhh9

Resources:

Geogebra. https://www.geogebra.org/classic

Google sheet:

 $\underline{https://docs.google.com/spreadsheets/d/1H_YIE1M9IUjBVVC23IhBNHglbgeqnV0WIZUCF7_xZj8/edit?usp=s}$

haring

Activity:

- Look for the information, which you collected on Tuesday 10th about the voltage of the solar panels, in the Google sheet <u>"ES worksheet form 6 Voltage Solar panels"</u>
 (https://docs.google.com/spreadsheets/d/1H_YIE1M9IUjBVVC23IhBNHglbgeqnV0WIZUCF7_xZj8/edit?usp=sharing)
- 2. Enter in geogebra classic: https://www.geogebra.org/classic
- 3. Construct a graph that relates the independent variable angle and the dependent current intensity.

 Export the image of the graph and upload it to the google form.
- 4. Analyse the graph and conclude about "how does this graph helps you to improve the design of the catamaran, constructed on Tuesday?

