EUCLIDIAN GEOMETRY

Design Geometry with Computer Aid
GEOCAD

1) Bisection-Proposition 9 3
2) Proposition 10 5
3) Straight-line-Proposition 11 6
4) Straight-line-Proposition 12 7
5) Stright Line -Proposition 29 8
6) Constructing Parallel Lines-Proposition 31 9
7) Square-Proposition 46 10

1) Bisection-Proposition 9

(To cut a given rectilinear angle in half.)
Bisection is dividing line segments or angles into two equal parts by a line, which is called a bisector. Bisecting an angle means drawing a ray in the interior of the angle, with its initial point at the vertex of the angle such that it divides the angle into two equal parts.

How to Bisect an Angle?

To bisect an angle without protractor you will need:

- a paper sheet;
- a pencil;
- a ruler;
- a compass.

Let's do this!

1. Draw a random angle BAC.
2. Place the compass on the vertex of the angle (point A). Draw an arc across each arm of the angle.
3. Place the compass on the point where one arc crosses an arm and draw an arc inside the angle. Without changing the compass width, repeat for the other arm so that the two arcs cross.

To cut a given rectilinear angle in half.

Let $B A C$ be the given rectilinear angle. So it is required to cut it in half.

Let the point D have been taken at random on $A B$, and let $A E$, equal to $A D$, have been cut off from $A C$ [Prop. 1.3], and let $D E$ have been joined. And let the equilateral triangle $D E F$ have been constructed upon $D E$ [Prop. 1.1], and let $A F$ have been joined. I say that the angle $B A C$ has been cut in half by the straight-line $A F$.

For since $A D$ is equal to $A E$, and $A F$ is common, the two (straight-lines) $D A, A F$ are equal to the two (straight-lines) $E A, A F$, respectively. And the base $D F$ is equal to the base $E F$. Thus, angle $D A F$ is equal to angle $E A F$ [Prop. 1.8].

Thus, the given rectilinear angle $B A C$ has been cut in half by the straight-line $A F$. (Which is) the very thing it was required to do.
4. Use a ruler to join the vertex to the point where the arcs intersect (F).
5. AF is the bisector of BAC.

Let's proof, that AF is the bisector of BAC. If we connect point D with B and C, then we get two triangles $A D C$ and $A D B$, which have a common side $A D$; side $A B$ is equal to side $A C$, and $B D$ is equal to $C D$. On three sides, the triangles are equal, which means that the angles $B A D$ and $D A C$ are also equal, lying opposite the equal sides $B D$ and $C D$. Therefore, line $A D$ will halve the angle BAC.

You can also see explanation in Euler's Academy video: https://youtu.be/cbCvpx1Am9M

How to Bisect an Angle in Geogebra?

1. Draw two rays $A B$ and $A C$, from the same point, using the Ray tool.
2. Then proceed in the same way as when drawing with a compass and a ruler. Draw a Circle with Center at Point A passing through some point D.
3. Mark the points of intersection of this circle with two rays with the letters E and
 F using Intersect tool Click on the circle and the side of the corner.
4. Now we have to draw two Circles of the same radius. Remember which points need to be taken as the centers of these circles. After constructing one circle, use the Compass tool to draw last one.
5. Mark the points of their intersection with the letter H. Now it remains to draw the
 ray AH , which will be the bisector of the angle BAC .

In Geogebra there is also a special tool for dividing an angle into two equal parts Angle Bisector. Draw some angle and bisect it using this tool.Geogebra activities
2) Proposition 10
"How to split a given finite straight line in half"
Follow the instructions given in the right column to make the geometrical construction of the middle of a straight segment

Proposition 10

To cut a given finite straight-line in half.
Let $A B$ be the given finite straight-line. So it is required to cut the finite straight-line $A B$ in half.

Let the equilateral triangle $A B C$ have been constructed upon ($A B$) [Prop. 1.1], and let the angle $A C B$ have been cut in half by the straight-line $C D$ [Prop. 1.9]. I say that the straight-line $A B$ has been cut in half at point D.

For since $A C$ is equal to $C B$, and $C D$ (is) common,
the two (straight-lines) $A C, C D$ are equal to the two (straight-lines) $B C, C D$, respectively. And the angle $A C D$ is equal to the angle $B C D$. Thus, the base $A D$ is equal to the base $B D$ [Prop. 1.4].

Thus, the given finite straight-line $A B$ has been cut in half at (point) D. (Which is) the very thing it was required to do.

Can you explain why this is true? (write a brief proof)

3) Straight-line-Proposition 11

You will learn how to draw straight-line at right-angles. ())
You will need:
a compass
a ruler
a pencil
a white paper.
You can find this drawings and more from Euqlid's Elements of Geometry Book1.

Let's do this !

1. Draw a straight line and mark to point A and B;

Proposition 11
To draw a straight-line at right-angles to a given straight-line from a given point on it.

Let $A B$ be the given straight-line, and C the given point on it. So it is required to draw a straight-line from the point C at right-angles to the straight-line $A B$. Let the point D be have been taken at random on $A C$, and let $C E$ be made equal to $C D$ [Prop. 1.3], and let the equilateral triangle $F D E$ have been constructed on $D E$ [Prop. 1.1], and let $F C$ have been joined. I say that the straight-line $F C$ has been drawn at right-angles to the given straight-line $A B$ from the given point C on it.

For since $D C$ is equal to $C E$, and $C F$ is common, the two (straight-lines) $D C, C F$ are equal to the two (straight-lines), $E C, C F$, respectively. And the base $D F$ is equal to the base $F E$. Thus, the angle $D C F$ is equal to the angle ECF [Prop. 1.8], and they are adjacent. But when a straight-line stood on a(nother) straight-line
makes the adjacent angles equal to one another, each of the equal angles is a right-angle [Def. 1.10]. Thus, each of the (angles) $D C F$ and $F C E$ is a right-angle.

Thus, the straight-line $C F$ has been drawn at rightangles to the given straight-line $A B$ from the given point C on it. (Which is) the very thing it was required to do.
2. İn the middle of the $A B$ segment draw the C point;
3. In between $A C$ points draw D point ;
4. The equilaeral triangle FDE is made by points DE where FC join;
4.1. with the help of a compass put the dry end of the compass in point C and the other end in D point turning the compass without move the dry end to find E point ; 4.2. Put the dry end of the compass in D point and the other end in E point and draw a trail.
4.3. Then put the dry end of the compass in E point and draw another trail.
4.4. Where the two trails intersect we have point F 5. At the end of the previous steps draw a straight line from D to F and F to E.

4) Straight-line-Proposition 12

You will learn how to draw a straight-line perpendicular to a given infinite straight-line from a given point which is not on it in old fashioned way. ())
You will need a compass, a ruler, a pencil, a protractor, and a white paper.
You can find this drawings and more from Euqlid's Elements of Geometry Book1.

Let's do this !

Proposition 12
To draw a straight-line perpendicular to a given infinite straight-line from a given point which is not on it.

Let $A B$ be the given infinite straight-line and C the given point, which is not on $(A B)$. So it is required to draw a straight-line perpendicular to the given infinite straight-line $A B$ from the given point C, which is not on ($A B$).

For let point D have been taken at random on the other side (to C) of the straight-line $A B$, and let the circle $E F G$ have been drawn with center C and radius $C D$ [Post. 3], and let the straight-line $E G$ have been cut in half at (point) H [Prop. 1.10], and let the straightlines $C G, C H$, and $C E$ have been joined. I say that the (straight-line) CH has been drawn perpendicular to the given infinite straight-line $A B$ from the given point C, which is not on $(A B)$.

For since $G H$ is equal to $H E$, and $H C$ (is) common, the two (straight-lines) $G H, H C$ are equal to the two (straight-lines) $E H, H C$, respectively, and the base $C G$ is equal to the base $C E$. Thus, the angle $C H G$ is equal to the angle EHC [Prop. 1.8], and they are adjacent. But when a straight-line stood on a(nother) straight-line makes the adjacent angles equal to one another, each of the equal angles is a right-angle, and the former straightline is called a perpendicular to that upon which it stands [Def. 1.10].

Thus, the (straight-line) CH has been drawn perpendicular to the given infinite straight-line $A B$ from the
given point C, which is not on $(A B)$. (Which is) the very thing it was required to do.
∇ Draw an $A B$ segment using the ruler. 10 cm length)
∇ Mark a point above $A B$ segment, name it C point.
∇ Mark a point under AB segment, name it D point.
∇ Open the compass CD lenght and draw a circle (center is C point).
∇ Mark G and H points on $A B$ segment.
∇ Draw two segments CG and CE.
∇ Divide GE into 2 segments and mark H point on it. (Ps: We have learnt in in Proposition 9, you can use that rules or you can divide your own way using ruler.)
∇ Draw CH segment and measure with the protractor.

5) Stright Line -Proposition 29

You will learn how to draw - in an old fashioned way - a straight-line falling across parallel straight-lines, which makes the alternate angles equal to one another. ();

You will need: a ruler, a pencil, white paper.
You can find this drawings and more from Euqlid's Elements of Geometry Book1.

Proposition 29

A straight-line falling across parallel straight-lines makes the alternate angles equal to one another, the external (angle) equal to the internal and opposite (angle), and the (sum of the) internal (angles) on the same side equal to two right-angles.

For let the straight-line $E F$ fall across the parallel straight-lines $A B$ and $C D$. I say that it makes the alternate angles, $A G H$ and $G H D$, equal, the external angle $E G B$ equal to the internal and opposite (angle) $G H D$, and the (sum of the) internal (angles) on the same side, $B G H$ and $G H D$, equal to two right-angles.

For if $A G H$ is unequal to $G H D$ then one of them is greater. Let $A G H$ be greater. Let $B G H$ have been added to both. Thus, (the sum of) $A G H$ and $B G H$ is greater than (the sum of) $B G H$ and $G H D$. But, (the sum of) $A G H$ and $B G H$ is equal to two right-angles [Prop 1.13]. Thus, (the sum of) $B G H$ and $G H D$ is [also] less than two right-angles. But (straight-lines) being produced to infinity from (internal angles whose sum is) less than two right-angles meet together [Post. 5]. Thus, $A B$ and $C D$, being produced to infinity, will meet together. But they do not meet, on account of them (initially) being assumed parallel (to one another) [Def. 1.23]. Thus, $A G H$ is not unequal to $G H D$. Thus, (it is) equal. But, $A G H$ is equal to $E G B$ [Prop. 1.15]. And $E G B$ is thus also equal to $G H D$. Let $B G H$ be added to both. Thus, (the sum of) $E G B$ and $B G H$ is equal to (the sum of) $B G H$ and $G H D$. But, (the sum of) $E G B$ and $B G H$ is equal to two right-

Let's do this !
$\nabla \quad$ Draw an $A B$ segment using the ruler. (10cm length)
$\nabla \quad$ Draw a CD segment (parallel to $A B$) using the ruler. (10 cm length)
$\nabla \quad$ Draw a straight-line EF fall across parallel straight-line $A B$ and $C D$ using the ruler.
$\nabla \quad$ Name the intersection between AB and EF line G point.
$\nabla \quad$ Name the intersection between CD and $E F$ line H point.
$\nabla \quad$ Alternate angles AGH and GHD are equal to one another.
$\nabla \quad$ External angle EGB and internal and opposite angle GHD are equal as well.
$\nabla \quad$ The sum of internal angles on the same side BGH and GHD is always equal to two right-angles.

6) Constructing Parallel Lines-Proposition 31

Parallel lines are lines that are equidistant at all points and would never touch if they went on forever.
You will learn how to draw parallel straight-line throught a given point using angle copy method.

You will need:

- a ruler,
- a pencil,
- a compass;
- paper sheet.

Let's do this!

1. Using a ruler draw a straight line $B C$.
2. Put some random point A, that does not belong to a straight line. It can be above or below it.
3. Put some point to line BC and label it D.
4. Using a ruler connect the points A and D with a line.
5. Prepare the compass. Set the compass to a width that is less than half of the line segment you constructed. Draw the angle ADC.

Proposition 31

To draw a straight-line parallel to a given straight-line, through a given point.

Let A be the given point, and $B C$ the given straightline. So it is required to draw a straight-line parallel to the straight-line $B C$, through the point A.

Let the point D have been taken a random on $B C$, and let $A D$ have been joined. And let (angle) $D A E$, equal to angle $A D C$, have been constructed on the straight-line $D A$ at the point A on it [Prop. 1.23]. And let the straightline $A F$ have been produced in a straight-line with $E A$.

And since the straight-line $A D$, (in) falling across the two straight-lines $B C$ and $E F$, has made the alternate angles $E A D$ and $A D C$ equal to one another, $E A F$ is thus parallel to $B C$ [Prop. 1.27].

Thus, the straight-line EAF has been drawn parallel to the given straight-line $B C$, through the given point A. (Which is) the very thing it was required to do.

Euclid's Elements Book 1: Proposition 31, Constructing Parallel Lines
6. Using the same compass width, place the tip of the compass on the point A. Draw an arc that intersects the transverse.
7. Draw the corresponding angle. Using the width of the first angle, set the tip of the compass at the point on the transverse line above the given point, and draw an arc that intersects the arc you created before.
8. Draw a line through the given point and the point created by the two intersecting arcs. This line is parallel to the given line through the given point.

"How to describe a square on a given straight line "

Follow the instructions given in the right column to make the geometrical construction of the description of a square on a straight line

Proposition 46

To describe a square on a given straight-line. Let $A B$ be the given straight. line. So it is required to describe a square on the straigh-line $A B$.

Let $A C$ have been drawn at right-angles to the graight-line $A B$ from the point A on it [Prop. 1.11]. and let $A D$ have been made equal to $A B$ (Prop. 1.3). And ler $D E$ have been drawn through point D patallel to AB (Prop. 1.31), and ler BE have been drawn through point B parallel to $A D$ [Prop. 1.31]. Thus, $A D E B$ is a parallelogram. Therefore, $A B$ is equal to $D E$, and $A D$ to $B E$ (Prop. 1.34]. But, $A B$ is equal to $A D$. Thus, the four (sides) $B A, A D, D E$, and $E B$ are equal to one another. Thus, the parallelogram $A D E B$ is equilateral. So I say that (it is) also right-angled. For since the straight-line
$A D$ falls across the parallels $A B$ and $D E$, the (sum of the) angles $B A D$ and $A D E$ is equal to two right-angles [Drop, 1.29]. But BAD (is a) right-angle. Thus, $A D E$ (is) also a right-angle. And for parallelogrammic figures, the opposite sides and angles are equal to one another [Prop. 1.34]. Thus, each of the opposite angles ABE and $B E D$ (are) also right-angles. Thus, $A D E B$ is rightangled. And it was also shown (to be) equilateral.

Thus, (ADEB) is a square [Def. 1.22]. And it is described on the straight-line $A B$. (Which is) the very thing it was required to do.

- Draw a segment $A B$.
- Draw the AC line at right-angles to the $A B$ segment at A point.
- On AC line take the $A D$ segment equal to $A B$.
- Draw the DE segment parallel to the $A B$.
- Repeat the previous step from B to E point.
- The $A D E B$ is a square and it is described on a straight line $A B$.

Can you explain why this is true?
(write a brief proof)

