EQUIRATERAL TRIANGLE

You will learn how to draw equirateral triangle in old fashioned way.
You will need:
a compass
a ruler
a pencil
a white paper.
You can find this drawings and more from Euqlid's Elements of Geometry Book1.

Proposition 1
To construct an equilateral triangle on a given finite straight-line.

Let $A B$ be the given finite straight-line.
So it is required to construct an equilateral triangle on the straight-line $A B$.

Let the circle $B C D$ with center A and radius $A B$ have been drawn [Post. 3], and again let the circle $A C E$ with center B and radius $B A$ have been drawn [Post. 3]. And let the straight-lines $C A$ and $C B$ have been joined from the point C, where the circles cut one another, ${ }^{\dagger}$ to the points A and B (respectively) [Post. 1].

And since the point A is the center of the circle $C D B$, $A C$ is equal to $A B$ [Def. 1.15]. Again, since the point B is the center of the circle $C A E, B C$ is equal to $B A$ [Def. 1.15]. But $C A$ was also shown (to be) equal to $A B$. Thus, $C A$ and $C B$ are each equal to $A B$. But things equal to the same thing are also equal to one another [C.N. 1]. Thus, $C A$ is also equal to $C B$. Thus, the three (straightlines) $C A, A B$, and $B C$ are equal to one another.

Thus, the triangle $A B C$ is equilateral, and has been constructed on the given finite straight-line $A B$. (Which is) the very thing it was required to do.

Let's do this!

∇ Draw an $A B$ segment using the ruler.(5 cm length)
∇ Widen the legs of the compass length of $A B$ segment and hold that measurement untill the drawing ends.
∇ Draw a circle.(Center is A point)
∇ Draw a second circle.(Center is B point)
∇ Intersect both circles above the $A B$ line and name it C point.
∇ Draw a segment from C to A using the ruler.
∇ Draw a segment from C to B using the ruler.
∇ Measure $C A$ and $C B$ segments using the ruler.

