The German Maths curriculum
E1 E2

Educational content	Keywords
Function concept and contemplation of elementary functional classes from lower secondary	Definition set, range, function term, equation, -graph, symmetry, table of values, inverse function.
Exponential function: $\mathrm{x}-\mathrm{>} \mathrm{a}^{*} \mathrm{~b}(\mathrm{x}-\mathrm{d})+\mathrm{e}$	Access to reality-based examples: growth and decay processes, interest, duplication and half-life as a parameter, graph for $b=2,1 / 2,10$ and characteristics, compared with linear, quadratic and cubic functions.
Logarithms	Finding the log in addition to the root extraction as a second possibility of reversal of the exponentiation, logarithmic laws $\log b(a)=\log 10(a) /$ $\log 10(b)$, judicious use of calculator.
Logarithmic functions $\mathrm{x}-\mathrm{>} \mathrm{a}^{*} \log 10(\mathrm{x}-\mathrm{d})+\mathrm{e}$	Revisiting the concept of inverse function, reversal of exponential function 10x, characteristics of logarithmic function.
Modelling of growth and process models	Modeling of processes from the natural, social or economics based on given data material for example from scientific or demoscopic investigations by exponential or other known functions, including by making use of different computers, exemplary comparison models and assessing their limits.
General sine function $x->{ }^{*} \sin (b x+c)+e$	Radians, dilation/compression and displacement of the graph of the sine function, use of PC.
Limit of a function	Radicals as limits of nested intervals, irrationality, approximately determination of π by infinitesimal methods, asymptotic behaviour at functions.
Introduction of the derivative term	Rate of change of a funktion; slope of a graph difference quotient limit of the difference quotient (graphic is

Derivative of a function at/on a digit	enough) determination by algebraic simplification of the quotient infinitesimal perception. Calculation of derivative elementary derivative function functions: $f(x)=x^{\wedge} n, n E Z, f(x)=\sqrt{ } x, f(x)=\sin (x)$ and $f(x)=\cos (x)$ link between geometric and algebraic perceptions derivative functions, higher derivative functions
Typical derivation calculi	Sum- and multiple rule
Functional examination with the help of the derivation calculi	Symmetry; monotonic -and bending behaviour; relative and absolute extreme points, inflection points (each necessity and sufficiency complete curve sketching on polynomial functions (primarily), but also examples from other function classes and function rallys.
Application of determination calculi	Extreme problems (also solutions with the method from lower secondary), determination of functions with claimed/predetermined properties, linearization of functions

Christian H. And Angelique W. p. $43 \& 44$

Educational content	Keywords
Introduction for integral calculus	Calculation of surfaces areas by approximation and limiting processes, definition of definite integral as limit for upper and lower sum, development of the basic idea of the integral term as generalized summation in application contexts, analysis of the integral term (meaning of the narrowness and continuity of functions) Characteristics and application of the certain integral (sum rule and multiplication rule) Extension and linking of differential and integral Term of the primitive integral and antiderivative Falculus Fundamental theorem of the differential and integral calculus and primitive integrals, surface area calculation. Investigation of complex functions, to developing and applying the product and chain rule (linear composition)
integral calculus	
Linear substitution as a	
convenience method of integration	
Working out of the relationship to	
the chain rule.	
Understanding handling of the	
developed calculi of the analysis of	
the known functional classes:	
Polynomial functions, simple	
rational functions, exponential	
functions and simple trigonometrical	
functions	

Felix A. p. 47

Educational content	Keywords
Introduction to integral calcus	Calculation of acreages by approximation and limit value processes, definition of the particular integral as the limit value of the upper and lower sum, development of the basic idea of the integral term as generalized summation in application contexts, analysis of the integral term (meaning of the narrowness and continuity of functions) Characteristics and usage of the particular integral (sum and factor rule) Term of antiderivative and indefinite integral Fundamental theorem of differential and integral calcus and antiderivative integral Numerical integration
Extansion and nexus of differential and integral calcus	Product rule, quotient rule, chain rule, derivation and inverse function Sensible handling with the acquired calcus of Analysis in known functional classes: Polynomial functions, rational functions, exponential and logarithm functions, trigonometric functions Mathematization of accretion and decay processes Integration by parts, integration by linear substitution, connection to the product and chain rule, improper integrals

| Usage and deepening of differential and integral
 calcus | Extremal problems (including
 integration), volume integral, integral
 term in application context,
 approximation of functions,
 asymptotic behavior, approximation
 by polynomial, compensation curve
 as mathematic models for given
 data |
| :--- | :--- | :--- |

Emre A. p. 48
grammar school
subject maths Q2 GK
\(\left.\left.$$
\begin{array}{|l|l|}\hline \text { Educational content } & \text { Keywords } \\
\hline \text { analytical geometry } & \begin{array}{l}\text { vectors } \\
\text { lines and planes (parametric } \\
\text { representation and coordinate } \\
\text { representation) } \\
\text { relation of the location of points, } \\
\text { lines and planes within space } \\
\text { for consolidation there are families } \\
\text { of plane and line surfaces to be } \\
\text { looked at } \\
\text { dot product } \\
\text { length of a vector } \\
\text { angle between two vectors, } \\
\text { orthogonality } \\
\text { normal form from planes } \\
\text { regulations of distances (except }\end{array} \\
\text { regulation of distances for skew } \\
\text { lines) } \\
\text { cutting angles of lines and planes } \\
\text { within space }\end{array}
$$\right\} \begin{array}{l}usages of the dot product \\
linear systems of equation \\
usages of systems of equation \\
systematically solution procedure, \\
structure and geometric \\

interpretation of the solution set\end{array}\right\}\)| |
| :--- |

Julia W. p. 51

Q2 LK
linear algebra/ analytical geometry
\(\left.$$
\begin{array}{|l|l|}\hline \text { Educational content } & \text { Keywords } \\
\hline \text { Analytical geometry } & \begin{array}{l}\text { Vectors } \\
\text { straight lines and planes (parametric } \\
\text { equation and coordinatic equation) } \\
\text { Lagebeziehungen von Punkten, } \\
\text { straight lines and planes in a space, } \\
\text { family of straight lines, family of } \\
\text { planes, scalar product with } \\
\text { applications, length of vectors, } \\
\text { angles between two vectors, } \\
\text { orthogonality } \\
\text { Vector product with applications }\end{array} \\
\text { System of linear equations } & \begin{array}{l}\text { Normal form of straight line } \\
\text { equations and plane equations, } \\
\text { distance regulations, bias angle }\end{array} \\
\text { Vector space } & \begin{array}{l}\text { Applications of systems of linear } \\
\text { equations } \\
\text { Systematic solution procedure, }\end{array}
$$ \\
structure and geometric \\

interpretation of the solution set\end{array}\right\}\)| Term of vector space |
| :--- |
| Radix and dimension |
| Term of matrix, product of matrices, |
| inverse matrix, applications in the |
| geometry and at not-geometric |
| problems |

Sabina W. p. 52

Educational content	Keywords
Basic terms of stochastic	Random experiments and events Absolute and relative frequency, frequency distribution and their graphical representation Measures of central tendency and variation, quantile
Concept of probability (Laplace-	
Calculation of the probability	Probability has to be recognised as a special case) Empiric law of large numbers
Addition rule	
Combinatorial counting problems (Counting	
procedure should only be dealt with as far as it is	
necessary for the understanding of the following	
questions)	Path rules (sum, product) Independence of two events Conditional probability
Ordered sample (with/without putting	
back)	
Disordered sample (without putting	
back)	

[^0]| Educational content | Keywords |
| :--- | :--- |
| Essential terms of stochastics | random experiments and
 occurrences
 absolute and relative frequencies,
 frequency
 distribution and their graphic
 representation
 measure of location and dispersion,
 quantile
 Probability term (Laplace-probability
 should be
 realised as outlier)
 empirical law of big numbers
 additive law of probability
 Calculation of probabilities
 law of calculating the probability of
 multi-
 level random experiments (sum,
 product) |
| Combinatorial counting problems | |
| independence of occurrences | |
| conditional probability | |$|$| Particular probability distributions procedures should only be learned as |
| :--- |
| much as they are needed for understanding the |
| following central issue. |
| Probability distribution of random parameter |
| ranges |

	dismissal, first or second kind of mistake, operation characteristic

Teresa H. p. 56

Q4

Course subjects and possible/potential content of the lessons:

Usual differential equation

Richtungsfeld, differential equation in main order/arrangement, existence- and monosemysentence, elementary methods of solution, differential equation in second order/arrangement

Power series

Polynomial functions as approximation functions, exponential series, power series, taylor's formula, taylor series

Numerical approximation process/approximation of functions

Interpolation through polynomial, approximation method, fixed point, NewtonRaphson method, numerical integration (chord- trapezium method, Simpson's rule), Regressionsmodelle

Circle and sphere

Circle in plane, sphere, plane and line, locationrelation between sphere, planes and lines, intersecting set

Conic sections

Vector equation of doublecones, vertical equations of conic sections, arts of conic sections (circle, parabola, ellipse und hyperbola)

Practical stochastics

Operations-charakteristic (use of binomial distribution - portiontest, use of normal distribution - mean value test, Gütefunktion), assessment of the mean value of a normally distributioned base, sign test, Chi-Square-Test, Monte-Carlo-Method, Markow-Chains, simulations

Determinants and matrices

System of linear equations and determinants, determinants and volume, transformations of matrices und determinants

Affine transformations

Definition and qualitys of affine transformations, portrayal of affine transformations, use in der fractal geometry

Mathematical structures and the process of proofs

Groups and solid figures; process of the proof: directly and indirectly proof; complete induction

Complex numbers

Introduction, definition and portrayal of complex numbers; to calculate with complex numbers; use of comblex numbers

[^0]: Jana M. P. 55

