

KATUN Model 3asa

This is the model that we have built in class with components of other rollcoasters.

THYPHOON Belgium

Given:
$\mathrm{m}=24,02 \mathrm{~g}$
Ybeginning $=1,02 \mathrm{~m}$
Ytop looping $=0,55 \mathrm{~m}$
Ybottom looping $=0,20 \mathrm{~m}$
Rlooping $=0,35 \mathrm{~m}$

Ghraps
Sleep tabelkolom naar de geel (horizontale as) of groen (vertical axis) voor trendlijn

markeringen		V
lijnen		\checkmark
st)		\square
as	horiz	vert
row	t	\times
0	0	1,09
1	0,033	1,079
2	0,067	1,076
3	0,1	1,066
4	0,133	1,062
5	0,167	1,05
6	0,2	1,037
7	0,233	1,021
8	0,267	0,999
9	0,3	0,98
10	0,333	0,952
11	0,367	0,927
12	0,4	0,899
13	0,433	0,867
14	0,467	0,832
15	0,5	0,795
16	0,533	0,753
17	0,567	0,712
18	0,6	0,666
19	0,633	0,621
20	0,667	0,577
21	0,7	0,523
22	0.733	0.474
		t bewerkb

$(x(t))$

In order to make these recordings we used a detector given to us by the school.

POINT A:

The carrel gains an
acceleration from our hand.

$y(t) \rightarrow \operatorname{Epot}(J / k g)$ (at the beginning, in
the middle and at the end)

POINT C:

The carrel is at the summit of the loop and has the lowest acceleration.

POINT D:

The carrel has the highest acceleration thanks to the slope of the loop.

Calculations:

$$
\begin{aligned}
& V_{\text {beginning }}(t=0.033)==0.1140842233 \mathrm{~m} / \mathrm{s} \\
& V_{\text {middle }}(t=0.733)==2.026457007 \mathrm{~m} / \mathrm{s} \\
& V_{\text {end }}(t=1.533)==1.331 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

The velocity increases until the looping, during the looping it decreases.

$$
\begin{aligned}
& \text { axbeginning }(t=0.067)=4.031922866 \mathrm{~m} / \mathrm{s}^{2} \\
& \text { ax middle }(t=0.733)==2.33157672 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

$$
\operatorname{axend}(t=1.500)==11.07687343 \mathrm{~m} / \mathrm{s}^{2}
$$

$E_{\text {kin }}=\left(m^{*} v^{2}\right) / 2$
Ekin beginning $=(24.02$ *
$\left.(0.1140842233)^{2}\right) / 2=$
$0,1563126722 \mathrm{~J}$
Ekin middle $=\left(24.02 *(2.026457007)^{2}\right)$
$/ 2=49,3194013 \mathrm{~J}$
Ekin end $=\left(24.02 *(1.331)^{2}\right) / 2=$

Epot $=m^{*} g^{*} h$

$$
\text { Epot beginning }(0.067)=24.02 * 9.81 *
$$

$$
1.02=240,348924 \mathrm{~J}
$$

$$
\text { Epot top looping }=24.02 * 9.81 * 0.55=
$$

$$
129,59991 \mathrm{~J}
$$

$\mathrm{E}_{\text {pot bottom looping }}=24.02 * 9.81^{*}$

$$
0.20=47,12724 \mathrm{~J}
$$

$$
\text { Epot middle }(0.733)=24.02 * 9.81 * 0.398=93,7832076
$$

$$
\mathrm{J}
$$

$$
E_{\text {pot end }}(1.500)=24.02 * 9.81 * 0=0
$$

Emech $=$ Ekin + Epot

$E_{\text {mech beginning }}=0.1563126722+240,348924=$ 240,5052367 J
$E_{\text {mech middle }}=49.3194013+93.7832076=$ $143,1026089 \mathrm{~J}$
Emech end $=21,28+0=21,28 \mathrm{~J}$

Problems scalemodel:
We needed a heavier ball because it needed to make a looping and our looping was big. With a heavier ball, the potential gravitation energy was bigger and that results in a higher velocity. At first it just fell, but with the heavier ball the problem was solved.

Table with energy

	$E_{\text {kin }}$	$E_{\text {pot }}$	$E_{\text {mech }}$
Beginning	$0,16 \mathrm{~J}$	$240,35 \mathrm{~J}$	$240,51 \mathrm{~J}$
Middle	$49,32 \mathrm{~J}$	$93,78 \mathrm{~J}$	$143,10 \mathrm{~J}$
End	$21,28 \mathrm{~J}$	0 J	$21,28 \mathrm{~J}$
Average	$23,58 \mathrm{~J}$	$111,38 \mathrm{~J}$	$134,96 \mathrm{~J}$

Mechanic energy change

The mechanic energy decreases because the ball loses energy because there's friction.

