	N° : $10,8,7$	NAMES: Willeke Verduyn, Cédric Vandesteene, Luka Vanoverschelde
	CLASS : 6MWE and 6LWE	
	NAME TEACHER: Els Merveillie	
	DATE: 15/05/2018	
VRIJE ASO.SCHOOL		
		E-Twinning

Correlatie coefficient (R-kwadraat) ongedefinieerd

Databouwer... Vernieuw Help

Correlatie coefficient (R-kwadraat) ongedefinieerd

$Y_{\text {beginning }}=0.214 \mathrm{~m}$
$\mathrm{Y}_{\text {middle }}=0.118 \mathrm{~m}$
$Y_{\text {end }}=0.046 \mathrm{~m}$

Berekeningen:

$V_{\text {beginning }}(\mathrm{t}=0.033)=0.35 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\text {middle }}(\mathrm{t}=0.167)=1.058030245 \mathrm{~m} / \mathrm{s}$
$V_{\text {end }}(t=0.267)=1.230026016$
The Velocity increases until the end.
$\left.\begin{array}{l}a_{x}(t) \\ a_{y}(t)\end{array}\right] \quad \mathbf{a}=$
a_{x}, beginning $(t=0.067)=5.136436995 \mathrm{~m} / \mathrm{s}^{2}$
a_{x}, middle $(t=0.167)=2.67548575 \mathrm{~m} / \mathrm{s}^{2}$
$a_{x, \text { end }}(t=0.233)=7.611331815 \mathrm{~m} / \mathrm{s}^{2}$
$E_{\text {kin }}=\left(m^{*} v^{2}\right) / \mathbf{2}$
$E_{\text {kin, beginning }}=\left(50 *(0.35)^{2}\right) / 2=3.0625 \mathrm{~J}$
$E_{\text {kin, middle }}=\left(50 *(1.058030245)^{2} / 2=27.98569998 \mathrm{~J}\right.$
$\mathrm{E}_{\text {kin, end }}=\left(50\right.$ * $(1.230026016)^{2} / 2=1.322799201 \mathrm{~J}$

$\mathrm{E}_{\mathrm{pot}}=\mathbf{m}{ }^{*} \mathrm{~g}^{*} \mathrm{~h}$

$\mathrm{E}_{\text {pot, beginning }}=50 * 9.81 * 0.214=104.967 \mathrm{~J}$
$\mathrm{E}_{\text {pot, middle }}=50 * 9.81 * 0.018=57.879 \mathrm{~J}$
$\mathrm{E}_{\text {pot }, \text { end }}=50 * 9.81 * 0.046=22.563 \mathrm{~J}$
$E_{\text {mech }}=E_{\text {kin }}+E_{\text {pot }}$
$E_{\text {mech, beginning }}=3.0625+104.967=108.0295 \mathrm{~J}$
$\mathrm{E}_{\text {mech } \text {, middle }}=27.98569998+57.879=85.86469998 \mathrm{~J}$
$E_{\text {mech }, \text { end }}=1.322799201+22.563=23.8857992 \mathrm{~J}$

Table with energy

	$\underline{E_{\text {kin }}}$	$\underline{\mathbf{E}_{\text {pot }}}$	$\underline{\mathbf{E}_{\text {mech }}}$
Beginning	3.0625	104.967	108.0295
Middle	27.98569998	57.879	85.8646998
End	1.322799201	22.563	23.8857992
average	10.790333	61.803	72.61516633

Conclusion

As you can see in our measurements and calculations the mechanic energy decreases. This can be explained because the attraction brakes at the bottom, so there's a decline in kinetic energy as well as gravitational potential energy.

In this graph we can see how much the model climbs during the duration of the carousel

In this graph we can see all the types of displacement that made the model during the execution of the test

