

Let's go for a ride! The physics of roller-coasters

Creating a scale model and performing measurements on the model

Oil Tower 1

The Model:

Analysis:

- First shot

(A) is the starting point
(B) is the point where the lift has the maximum speed
(C) is the point where the lift has reached the top of the tower (maximum height).

- First fall

(D) is the point where the lift starts to slow down.
(\mathbb{E}) is the lowest point reached by the lift in the first fall.

Graphics:

Analysis made with Tracker

Analysis made with an acceleration sensor
Programme of the scale model:

```
0i1 Tover 1 programming code
// voltage: 12,5 V
|/*
constant declaration, they never change until someone changes the programme
const int MAX_pwM = 255; // max value pernitted to handle motor power
const int MIN_PWM = 0; // min value permitted to handle motor power
const int conv_s = 1000; // milliseconds-to-seconds conversion value
const int T_MAX = 1800; // max time for a ride
define which pin has to do
*/
int pin PuM = 11; // pin used for actual power's value ( 0=0%, 255 = 100%)
int pin_orario = 12; // pin used for clockwise rotation
nt pin_antiorario = 13;// pin used for counter-clockwise rotation
int pin_tasto = 7; // pin used for start button
/*
variable declaration, they could change during programme execution
```

int pwn_value; // power-counter variable
double t ; // time passed(in milliseconds)
/*
divided in 2 parts:
the setup: initialize all Arduino's settings and instructions
the loop: it's the main part of the program, it runs in an uninterrupted loop that ends only when you switch off the pover or you change programme
void setup () (
Serial.begin(9600) ; // wait 9,6 seconds to run the program, default
Serial.printin("start"); // printing to serial monitor when Arduino is ready to wort
pinMode (pin_pun, ourpur) ; // output-only pin 11 setting
pinMode (pin_orario, ourput) ; // output-only pin 12 setting
pinHode(pin_antiorario, ourput) ; // output-only pin 13 setting
pinMode (7, inPuT_PULLUP) ; // input-only pin a setting
)
/
function that control all the ride

```
void ride()(
    t=0; // setting the variable of the time to value
    dof
        pwm_value = pwm_value_sin(t); // calling the function that teturns the power level (betveen 0 and 255)
        t += 5; // increasing the time, 5 milliseconds per cycle
    if (pwm_value >= 0) ( // controlling if the power level is over or below of
        /*
            if it's above, the motor has a clockwise rotation
        *
        Serial.println(pvil_value)
        digitalWrite(pin_orario, HIGH) ; // declaring that pin 12 is the phase
        digitalWrite(pin_antiorario, LOW); // declaring that pin 13 is the neutral
        analogWrite(pin_pwM, pwn_value); // giving the power value to pin 11
        } else (
        /*
        // It's below, the motor has a counter-clockwise rotation
        if(t<=1330) (// when the time is below this value, the motor pushes down the carriage with an acceleration higher than the gravity one
            digitalUrite(pin_orario, LOW); // declaring that pin 12 is the neutral
            digitalUrite(pin_antiorario, HIGH) ; // declaring that pin 13 is the phase
            analogWrite(pin_pwM, -pwn_value); // giving the pover value to pin 11
            jelsef // when the time is over the value, the motor controls the carriage fall and stops it before it slams down
            f(t<=1450) (
            digitalWrite(pin orario, HIGH); // declaring that pin 12 is the phass
            digitalWrite(pin_antiorario, Low); // declaring that pin 13 is the neutral
            analogWrite(pin_pwM, 145); // declaring that pwM value is 145 out of 255 to contrast the gravity acceleration,controls and stops the fall
            }else{
            digitalWrite(pin_orario, HIGH) ; // declaring that pin 12 is the phase
            digitalWrite(pin_antiorario, Low); // declaring that pin 13 is the neutzal
            analogWrite(pin_puM, 50); // declaring that pWM value is 50 out of 255 to contrast the gravity acceleration,controls and stops the fall
        ,'
        ,'
    delay(5); // everytime the programme has completed its run, Arduino waits 5 milliseconds before starting another cycle
    fwhile(t!=T_MAX); // exit from the loop and to the function only if the time has reached the max value
)
function that transforms the time(in seconds) to the ecuals value in radians, one shot and one fall is like 2n radians
*/
double a_rad(double t) (
    return t * 2 * PI / T_MAX; // returning the value of the time transformed to radians
}
/*
|ation that returns the power value between -255 and a55
*/
int pwin_value_sin(double t) {
    return MIN_PWM + MAX_PWM * sin(a_rad(t)); // returning the power value as a multiplication between the max power and the sin value in a particular time
)
/*
Tars the uminterupred 1001
*/
void loop() (
    if(digitalRead(7) == LOW)( // controlling if the button has been pulled. HIGH = pulled, Low = not pulled
    Serial.println("start"); // printing to the serial monitor when the ride is starting
```

 delay(1000); // waiting for 1 second to start the ride
 ride(): // calling the function that starts the ride
 digitalWrite(pin_orario, HIGH) ;
 digitalWiite (pin_antiorario, Low)
 analogWrite (pin_pwM, 11);
 * setting clockwise rotation to keep rest the motor
 ,
 ,

programmers: Elisabetta Donati, Lanconelli Luca.
thanks to Enzo Cortesi, Peter Ulf Johan Helgesson, Elisa Capucci, Marco Vassura and Elisabetta Medici for their patience and their help during all the project.
*/

Screaming Eagle

In this file we are going to discuss the results of our scale model. We got the data from the analyses of the program tracker. We calculated three kinds of energy. Kinetic, potential and mechanical energy. We made our conclusions based on the difference of these energy. We could not calculate V_{x} because there's no horizontal movement.
$\mathrm{E}_{\text {kin }}=\mathrm{m} \cdot \mathrm{v}^{2}$

The kinetic energy at the beginning:

Data: $\mathrm{m}=60 \mathrm{~g}=60.10^{3} \mathrm{~kg}$

$$
V_{b}=-88,097 \mathrm{~m} / \mathrm{s}
$$

Wanted: $\mathrm{E}_{\text {kin, }}$ b
Solution: $\quad E_{k i n, b}=60 \cdot 10^{3} \mathrm{~kg} \cdot(-88,97) \mathrm{m} / \mathrm{s}=-5,3 \cdot 10^{6} \mathrm{~J}$

The kinetic energy in the middle

Data: $\mathrm{m}=60 \mathrm{~g}=60 \cdot 10^{3} \mathrm{~kg}$

$$
v_{m}=-115 \mathrm{~m} / \mathrm{s}
$$

Wanted: $\mathrm{E}_{\text {kin, }}$ m
Solution: $E_{\text {kin, } m}=60 \cdot 10^{3} \mathrm{~kg} \cdot(-115) \mathrm{m} / \mathrm{s}=-6,9 \cdot 10^{6} \mathrm{~J}$

The kinetic energy at the end

Data: $\mathrm{m}=60 \mathrm{~g}=60.10^{3} \mathrm{~kg}$

$$
v_{\mathrm{e}}=-250 \mathrm{~m} / \mathrm{s}
$$

Wanted: $\mathrm{E}_{\text {kin, } \mathrm{e}}$
Solution: $E_{\text {kin, }}=60 \cdot 10^{3} \mathrm{~kg} \cdot(-250) \mathrm{m} / \mathrm{s}=-1,5 \cdot 10^{7} \mathrm{~J}$

```
\Delta Ekin}=\mp@subsup{E}{kin,e}{e}-\mp@subsup{E}{kin,b}{
    = -1,5 \cdot107}-(-5,3\cdot1\mp@subsup{0}{}{6})=-1,4\cdot1\mp@subsup{0}{}{7}\textrm{J
```

$\mathrm{E}_{\text {pot }}=\mathrm{m} . \mathrm{g} \cdot \mathrm{h}$

The potential energy at the beginning

Data: $\mathrm{m}=60 \mathrm{~g}=60 \cdot 10^{3} \mathrm{~kg}$

$$
\begin{aligned}
& \mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~h}=38 \mathrm{~m}
\end{aligned}
$$

Wanted: $\mathrm{E}_{\text {pot, }, \mathrm{b}}$

Solution: $\quad E_{p o t, b}=60 \cdot 10^{3} \mathrm{~kg} \cdot 9,81 \mathrm{~m} / \mathrm{s}^{2} \cdot 38 \mathrm{~m}=2,2 \cdot 10^{7} \mathrm{~J}$

The potential energy in the middle

Data: $\mathrm{m}=60 \mathrm{~g}=60 \cdot 10^{3} \mathrm{~kg}$

$$
\begin{aligned}
& \mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~h}=18 \mathrm{~m}
\end{aligned}
$$

Wanted: $E_{\text {pot, }, ~}$
Solution: $\quad E_{p o t, b}=60 \cdot 10^{3} \mathrm{~kg} \cdot 9,81 \mathrm{~m} / \mathrm{s}^{2} \cdot 18 \mathrm{~m}=1,1 \cdot 10^{7} \mathrm{~J}$

The potential energy at the end

Data: $\mathrm{m}=60 \mathrm{~g}=60.10^{3} \mathrm{~kg}$

$$
\begin{aligned}
& \mathrm{g}=9,81 \mathrm{~m} / \mathrm{s}^{2} \\
& \mathrm{~h}=2 \mathrm{~m}
\end{aligned}
$$

Wanted: $E_{\text {pot, }}$ b
Solution: $\quad E_{\text {pot }, \mathrm{b}}=60.10^{3} \mathrm{~kg} \cdot 9,81 \mathrm{~m} / \mathrm{s}^{2} \cdot 2 \mathrm{~m}=1,2 \cdot 10^{6} \mathrm{~J}$
The difference in potential energy
$\Delta \mathrm{E}_{\mathrm{pot}}=\mathrm{E}_{\mathrm{pot}, \mathrm{e}}-\mathrm{E}_{\mathrm{pot}, \mathrm{b}}$

```
=1,2 \cdot10}\mp@subsup{0}{}{6}\textrm{J}-2,2\cdot1\mp@subsup{0}{}{7}\textrm{J}=-2,0\cdot1\mp@subsup{0}{}{7}\textrm{J
```

$\mathrm{E}_{\text {mech }}=\mathrm{E}_{\text {kin }}+\mathrm{E}_{\text {pot }}$

The mechanical energy at the beginning

Data: $E_{k i n, b}=-5,3.10^{6} \mathrm{~J}$

$$
\mathrm{E}_{\mathrm{pot}, \mathrm{~b}}=2,2 \cdot 10^{7} \mathrm{~J}
$$

Wanted: Emech,
Solution: $E_{\text {mech }, b}=E_{k i n, b}+E_{\text {pot,b }}=-5,3 \cdot 10^{6}+2,2 \cdot 10^{7} \mathrm{~J}=2,7 \cdot 10^{7} \mathrm{~J}$

The mechanical energy in the middle

Data: $E_{\text {kin, }}=-6,9 \cdot 10^{6} \mathrm{~J}$

$$
E_{\text {pot }, \mathrm{m}}=1,1 \cdot 10^{7} \mathrm{~J}
$$

Wanted: $\mathrm{E}_{\text {mech, }}$ m
Solution: $E_{\text {mech }, m}=E_{\text {kin, } m}+E_{\text {pot, }, m}=-6,9 \cdot 10^{6}+1,1 \cdot 10^{7} \mathrm{~J}=5,1 \cdot 10^{6} \mathrm{~J}$

The mechanical energy at the end

Data: $E_{\text {kin, }, ~}=-1,5 \cdot 10^{7} \mathrm{~J}$

$$
\mathrm{E}_{\mathrm{pot}, \mathrm{e}}=1,2 \cdot 10^{6} \mathrm{~J}
$$

Wanted: $E_{\text {mech, }}$
Solution: $E_{\text {mech }, \mathrm{e}}=\mathrm{E}_{\text {kin, } \mathrm{e}}+\mathrm{E}_{\text {pot,e }}=-6,9 \cdot 10^{6} \mathrm{~J}+1,1 \cdot 10^{7} \mathrm{~J}=4,1 \cdot 10^{6} \mathrm{~J}$

The difference in mechanical energy

$$
\begin{aligned}
\Delta E_{\text {mech }} & =E_{\text {mech, } e}-E_{\text {mech }, b} \\
& =4,1 \cdot 10^{6} \mathrm{~J}-2,7 \cdot 10^{7} \mathrm{~J}=-2,2 \cdot 10^{7} \mathrm{~J}
\end{aligned}
$$

Conclusion

We can conclude that our results are not completely correct, because we used a scale model. We realized that our v_{x}-graphic is not important, because we have a drop tower and the graphic is based on the left and right movements in its drop. The speed increases when it drops, that's also what we thought, because it only falls because of the gravity. It's not a smooth line because it slipped at the end.

This graph is not useable because there's no horizontal movement.

This is the $\mathrm{V}_{\mathrm{x}}(\mathrm{T})$ graph and shows the speed of the falling cage. It's not a smooth graph because it slipped at the end.

This is the

