Let's go for a ride! The physics of roller-coasters Creating a scale model and performing measurements on the model

Given:

$\mathrm{m}=24,02 \mathrm{~g}$
$Y_{\text {begining }}=1,02 \mathrm{~m}$
$Y_{\text {top looping }}=0,55 \mathrm{~m}$
$Y_{\text {bottom looping }}=0,20 \mathrm{~m}$
$R_{\text {looping }}=0,35 \mathrm{~m}$
Ghraps
$y(x)$

$(x(t))$

$\mathrm{y}(\mathrm{t}) \quad \rightarrow \mathrm{E}_{\mathrm{pot}}(\mathrm{J} / \mathrm{kg})$ (at the beginning, in the middle and at the end)

\(\left.\begin{array}{l}v_{x}(t)

v_{y}(t)\end{array}\right] \quad\)| $v=\sqrt{v x 2+v y 2}$ |
| :--- |
| |
| |
| |
| (at the beginning, in the middle and at the end) |

Calculations:

$V_{\text {beginning }}(t=0.033)=\sqrt{-0.102^{2}+\left(-5.11 * 10-^{2}\right)^{2}}=0.1140842233 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\text {middle }}(\mathrm{t}=0.733)=\sqrt{(-1.612)^{2}+(-1.228)^{2}}=2.026457007 \mathrm{~m} / \mathrm{s}$
$V_{\text {end }}(t=1.533)=\sqrt{(-1.331)^{2}+0^{2}}=1.331 \mathrm{~m} / \mathrm{s}$
The velocity increases until the looping, during the looping it decreases.
$a_{x}(t)$

$$
\mathrm{a}=\sqrt{a x 2+a y 2}
$$

$a_{y}(t)$
ax beginning $(\mathrm{t}=0.067)=\sqrt{(-2.851)^{2}+(-2.851)^{2}}=4.031922866 \mathrm{~m} / \mathrm{s}^{2}$
ax middle $(\mathrm{t}=0.733)=\sqrt{(-1.535)^{2}+(-1.755)^{2}}=2.33157672 \mathrm{~m} / \mathrm{s}^{2}$
$a x_{\text {end }}(t=1.500)=\sqrt{(10.97)^{2}+1.535^{2}}=11.07687343 \mathrm{~m} / \mathrm{s}^{2}$
$\underline{E}_{\text {kin }}=\left(m^{*} v^{2}\right) / 2$
$E_{\text {kin beginning }}=\left(24.02 *(0.1140842233)^{2}\right) / 2=0,1563126722 \mathrm{~J}$
$E_{\text {kin middle }}=\left(24.02 *(2.026457007)^{2}\right) / 2=49,3194013 \mathrm{~J}$
$\mathrm{E}_{\text {kin end }}=\left(24.02 *(1.331)^{2}\right) / 2=21,27644761 \mathrm{~J}$

Epot= m*g*h

$E_{\text {pot beginning }}(0.067)=24.02 * 9.81 * 1.02=240,348924 \mathrm{~J}$
$\mathrm{E}_{\text {pot top looping }}=24.02 * 9.81 * 0.55=129,59991 \mathrm{~J}$
$E_{\text {pot bottom looping }}=24.02 * 9.81 * 0.20=47,12724 \mathrm{~J}$
$\mathrm{E}_{\text {pot middle }}(0.733)=24.02 * 9.81 * 0.398=93,7832076 \mathrm{~J}$
$\mathrm{E}_{\text {pot end }}(1.500)=24.02 * 9.81 * 0=0$

Emech $=$ Ekin + Epot

$E_{\text {mech beginning }}=0.1563126722+240,348924=240,5052367 \mathrm{~J}$
$\mathrm{E}_{\text {mech middle }}=49.3194013+93.7832076=143,1026089 \mathrm{~J}$
$E_{\text {mech end }}=21,28+0=21,28 \mathrm{~J}$

Problems scalemodel:

We needed a heavier ball because it needed to make a looping and our looping was big. With a heavier ball, the potential gravitation energy was bigger and that results in a higher velocity. At first it just fell, but with the heavier ball the problem was solved.

Table with energy

	$\mathbf{E}_{\text {kin }}$	$\mathbf{E}_{\text {pot }}$	$\mathbf{E}_{\text {mech }}$
Beginning	$0,16 \mathrm{~J}$	$240,35 \mathrm{~J}$	$240,51 \mathrm{~J}$
Middle	$49,32 \mathrm{~J}$	$93,78 \mathrm{~J}$	$143,10 \mathrm{~J}$
End	$21,28 \mathrm{~J}$	0 J	$21,28 \mathrm{~J}$
Average	$23,58 \mathrm{~J}$	$111,38 \mathrm{~J}$	$134,96 \mathrm{~J}$

Mechanic energy change

The mechanic energy decreases because the ball loses energy because there's friction.

