Physics and Chemistry Project

Made by Soheib Daadi Lachi.

Materials (I)

- Termomether: to mesure the temperature
- Pipette to put substances
- pH indicator
- 2 assay tubes
- NaOH 1 M
- HCl 0.5 M

Procedure

- First, in the test tube A we put 2.5 ml of 1 M NaOH and two drops of the pH indicator
- Then, in the test tube B we put 5 ml of 0.5 M HCl and two drops of the pH indicator

TUB A
NaOH

TUB B
HCl

Results

$\mathrm{NaOH}+\mathrm{HCl}$

The result is a yellow liquid like this and write down it on the data table.

The data table (I)

- This is the data table, we write the data on it. (this is the exothermic reaction)

A	Blue	$24^{\circ} \mathrm{C}$
B	Purple	$24^{\circ} \mathrm{C}$
The mix	Yellow	$26^{\circ} \mathrm{C}$

Materials (ii)

1. Two test tubes: to mix and see results
2. A thermometer: to measure the temperature
3. $\mathrm{NH}_{4} \mathrm{NO}_{3}$ in a test tube
4. $\mathrm{Ba}(\mathrm{OH})_{2}$ in another test
5. Crystal watch

Procedure

- First take $\mathrm{NH}_{4} \mathrm{NO}_{3}$ (ammonium nitrate), put on the crystal watch $0^{\prime} 600 \mathrm{~g}$ and put into glass test tube.
- Then take $\mathrm{Ba}(\mathrm{OH})_{2}$ (barium hydroxide), put on the watch glass 0 ' 642 g and put it into a test tube.

Results

- The result of the mixture of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ and $\mathrm{Ba}(\mathrm{OH})_{2}$ is a very cold liquid is approximately 8° CAnd everything we do point in the table.

Data table (II)

The data table as follows: (endothermic reaction)

$\left.\mathbf{N H}_{4} \mathbf{N O}_{3}+\mathbf{B a (O H}\right)_{2}$

To calculate the energy

- To calculate the energy in the test tube we need this formulae:
-

$$
\mathrm{E}=\mathrm{M} \cdot \mathrm{Ce}(\mathrm{Tf}-\mathrm{Ti})
$$

- For example $=1^{\prime} 242 \mathrm{~g} \mathrm{Ce}=$ specific heat $\mathrm{Ti}=21^{\circ} \mathrm{C}$

$$
\mathrm{Tf}=8^{\circ} \mathrm{C}
$$

$$
E=1^{\prime} 242 \times 1(8-21) \quad E=1^{\prime} 242 \times(-13) \quad E=-16^{\prime} 146 \mathrm{cal}
$$

- To pass it on Joules $=1 \mathrm{cal}=\left(4^{\prime} 18 \mathrm{~J}\right) \quad-16^{\prime} 146 \mathrm{cal} \times 4^{\prime} 18=-67^{\prime} 49028 \mathrm{~J}$

conclusion

In conclusion, the formulae " $\mathrm{E}=\mathrm{M} \cdot \mathrm{Ce}(\mathrm{Tf}-\mathrm{Ti})$ " serves to calculate the energy ejected in the form of heat. While the endothermic reaction decreases the temperature of the mixture, the exothermic reaction increases the temperature of the mixture.

The end

