Physics and Chemistry Project

Made by Soheib Daadi Lachi.

Materials (I)

- Termomether: to mesure the temperature
- Pipette to put substances
- pH indicator
- 2 assay tubes
- NaOH 1M
- HCI 0.5 M

Procedure

- First, in the test tube A we put 2.5 ml of 1M NaOH and two drops of the pH indicator
- Then, in the test tube B we put 5 ml of 0.5 M HCl and two drops of the pH indicator

Results

• NaOH+HCI

The result is a yellow liquid like this and write down it on the data table.

The data table (I)

• This is the data table, we write the data on it. (this is the exothermic reaction)

A	Blue	24°C
В	Purple	24°C
The mix	Yellow	26°C

Materials (ii)

- 1. Two test tubes: to mix and see results
- 2. A thermometer: to measure the temperature
- 3. NH_4NO_3 in a test tube
- 4. $Ba(OH)_2$ in another test
- 5. Crystal watch

Procedure

- First take NH₄NO₃ (ammonium nitrate), put on the crystal watch 0'600 g and put into glass test tube.
- Then take Ba(OH)₂ (barium hydroxide), put on the watch glass 0'642 g and put it into a test tube.

Results

 The result of the mixture of NH₄NO₃ and Ba (OH)₂ is a very cold liquid is approximately 8 ° CAnd everything we do point in the table.

Data table (II)

The data table as follows: (endothermic reaction)

$NH_4NO_3 + Ba(OH)_2$		
First temperature	21°C	
Last temperature	8°C	

To calculate the energy

- To calculate the energy in the test tube we need this formulae:
- E=M•Ce(Tf-Ti)
- For example=1'242 g Ce=specific heat Ti=21°C

Tf=8°C

 $E=1'242\times1(8-21)$ $E=1'242\times(-13)$ E=-16'146 cal

• To pass it on Joules= 1cal=(4'18 J) -16'146cal×4'18=-67'49028 J

conclusion

In conclusion, the formulae ''E=M•Ce(Tf-Ti)'' serves to calculate the energy ejected in the form of heat. While the endothermic reaction decreases the temperature of the mixture, the exothermic reaction increases the temperature of the mixture.

The end