
Water Percolation
Doica Rares-Andrei Miron Alexandru-Bogdan Munteanu Matei-Ioan

Colegiul National ”Emil Racovita” Cluj-Napoca

Problem Statement

Figure 1. Visual representation of the problem statement

The soil is modeled by a grid of 100x50 cells with a certain density of occupied cells

(represented by the color black). The water (blue) is on the top layer and it will fill

every adjacent cell that is empty (coded with the color white). Let t be the number

of iterations required by the water to cross the entire ground from top to bottom.

Establish the relation between the time t and the function d, based on the simulations.

Either a cell is black with a probability d of instantiating or the soil (grid) has a density

d. The two cases are different to program and compute.

Methods of Approaching the Problem

Even though it may seem difficult at first, after careful thought we can recognise 2

distinct ways to solve the problem:

Mathematical Approach computing the number of matrices that don’t let the

water percolate (based on combinatorics formulas), thus obtaining the percolation

probability.

Computer-Science Approachwill compute every single way that the water can

spread based on modified basic algorithms.

Defining the Methods

Herewe can divide the problem based on the cases enumerated above: the chance

of a black cell to appear and the density of all black cells fluctuating (the water

requires tdensity time to pass through).

From a mathematical standpoint, in order to obtain a formula which gives you the

probability of the water percolating with respect to the density of the matrix, first

we need to observe in which cases thewater cannot percolate to the bottom. Ifwe

can find a function to express the probability of the water not percolating to the

bottom (let’s denote it p′), than the probability of thewater percolating (let’s denote
it p) is p = 1 − p′ (assuming that 0 <= p <= 1 and 0 <= p′ <= 1). Furthermore, if a

wall has a length l, than the probability of that wall being instantiated is dl.

From a computer-science point of view, we can conclude based on these facts that

this problem is a path finding problem in which we are required to compute the

distance between every first-row water cell and the last row that denotes the end

of our portion of land. In order to achieve such simulation, each individual path

for a singular agent(water cell) should be computed at the exact same time as the

other agents in order to get a correct result.

Mathematics Curve Visualisation

Using the open-source libraryManim, we can generate amathematical function using

the values generated from the 1000 tests we ran for a wide range of densities.

For each density, we generated 100 random matrices of the respective soil density,

and for each one we calculated the number of time units necessary for the water to

percolate. In case the water cannot percolate, we assign a big value to the number of

steps in order to represent the function.

Path-finding Principles

In computer science , path-finding is the plotting of the shortest route between two

points. A great example that has applicability in real life is solving a maze (the maze

being represented by a n · m matrix where 0 stands for a free space that can be ac-

cessed by an individual agent, whereas -1 stands for a space that cannot be traversed).

Note that the grid can be codified according to the needs of the problem.

Adding another layer of complexity, suppose that there are n agents that have differ-

ent starting points (x1, y1), (x2, y2), . . . , (xn, yn) and need to get to a specified cell in

the shortest time. Assuming that all of them start at the same time t, computing the

shortest path for each one is not enough, because there will be cases of overlapping.

Multi-agent path finding has the purpose of finding paths for multiple agents from

their current location to their target locationswithout collidingwith each other, while

at the same time computing the shortest way possible.

Figure 2. Multi-agent spreading visual representation

Breadth First Search, Lee’s Path-finding

From a computer science perspective , the algorithm works as follows: two matrices

need to be initialised of size n · m, one for storing the coded maze as values of 0

(empty cell) and 1 (occupied cell) and one matrix that has the purpose of storing the

number of steps it would take an agent to reach a certain cell that has the coordinates

(xcell, ycell).

Figure 3. A correct implementation of BFS search using multi-agent theory

Analyzing the Generated Output and iOS Implementation

Analyzing the output (or the end-result) is required for a better understanding of the

path finding mechanism. Suppose that a single agent is placed at the center of an

empty grid (no black cells are instantiated). The behavior of the agent (that is placed

at the position (3,3)) using a matrix is as follows:
5 4 3 4 5
4 3 2 3 4
3 2 1 2 3
4 3 2 3 4
5 4 3 4 5


Applying the multi-agent principle for 2 agents that are situated on the first row, the

shortest path to a certain point has been decreased due to the number of unique

starting positions. It is possible that a position in the grid can’t be reached (denoted

by its null value). 
∗ ∗ 1 1 ∗ ∗ ∗ 1 1
0 0 ∗ 2 ∗ 6 ∗ ∗ 2
∗ ∗ 4 3 4 5 5 4 3
∗ 6 5 4 ∗ 6 6 5 ∗
∗ 7 ∗ ∗ 11 ∗ 7 6 7
∗ 8 9 10 10 9 8 ∗ 8



http://e-racovita.ro/ Avignon Spring Congress, France, 2022 mironalexandrubogdan@e-racovita.ro

http://e-racovita.ro/
mailto:alyssa.p.hacker@example.com

