
WATER POINTS IN THE SCHOOL 1
() , 1–14

Water points in the school

LOHAN LARISA AND MATES, ANDRA, COORD. DALY MARCIUC
Colegiul Nat,ional ”Mihai Eminescu”, Satu Mare, România

LORENA GABRIAN, CRISTIAN GAVRILA, TEOFIL VOICU, CEZARA IANCU, ILINCA MOISA,
MIHAI PRUNEANU, COORD.ARIANA VĂCĂRET, U

Colegiul Nat,ional ”Emil Racovit,ă”, Cluj Napoca, România

AND

TYLIANN NOZAIS, ISMAËL BEJAOUI, PHILOMÈNE MINIMA, MATHILDE
BAROUCH-LEMARCHAND, GRÉGOIRE LENAY, FLAVIEN SANSONETTI, BILEL LOTFI, CHLOÉ

BLANC, COORD. HUBERT PROAL
Lycée ”Val de Durance”, Pertuis, France

[]

Abstract. This article is based on the MATh.en.JEANS subject no.4 in the 2021-2022 ERASMUS+
MaSuD project. It aims to solve the problem and generalize it. The MaSuD project, a KA229 Eramus+
partnership, combines two educational issues: math anxiety and raising awareness on environmental
issues. We believe that learning mathematics through open-ended problems allows students to overcome
math anxiety and acquire various concepts and thinking skills.

1. Introduction

The statement of the research topic is as follows: Our school building has a certain shape, with water
points (Q, R and S) at ground floor for watering plants and in case of fire. Which area is closest to each
water point and what is the greatest distance between a water point and a point in the school? The plan
of the school can be seen in Fig.1

FIG. 1.

2 WATER POINTS IN THE SCHOOL

2. A mathematical solution

Formula The distance between two points

A(x1,y1),B(x2,y2) (2.1)

is given by the formula

d =

√
(x1 − x2)

2 +(y1 − y2)
2 (2.2)

The first idea was to take some random points and calculate the distance between them and the water
points. So, for example we took the point marked with the red cross on Fig.2 and the distance obtained
by applying the formula mentioned before for QX is 11.7, or for QZ is 10.2. But, soon enough we
understood that this was not at all an efficient method, an infinity of calculations being needed for a
precise result.

FIG. 2.

WATER POINTS IN THE SCHOOL 3

3. An efficient method using Geogebra

Those distances led us to instantly think about radiuses and circles. It is well known that circles can be
used to determine equal distances, therefore it can be used to compare them if they are not the same.
For a clean, accurate and rigorous graphic representation, Geogebra Geometry was used.

3.1. The greatest distance between a water point and a point in the school

In this section, we aim to learn which points inside and outside of the school are situated furthest away
from each water point.

Extensive scheme. If we can create a circle with the center in the water point, the points furthest away
from it, that are included in the surface of the circle, will be located its outline. Any other point situated
inside the created shape will not be as far from the water point as them. So, if the circle is enlarged until
it intersects the area of the school in only one point (and the rest of the school is inside the circle), that
will be the greatest distance between the used water point and a point in the school.
The first analyzed case was for Q(1,11). As described before, the circle with the center in Q was created
and its radius made bigger and bigger until it cut through the area of the school just once. Then the
same was proceeded for the yard. Therefore the points marked with the red crosses (Fig.3 left) were
discovered as creating the biggest distance.
The second case was for R(6,8). It was proceeded just like in the first case: a circle with the center in R
was created and extended until it reached the final point. However, in this particular case, when creating
the second circle when searching the point furthest away in the yard it can be observed that actually two
points fulfill the requirements (Fig.3 right)

FIG. 3.

4 WATER POINTS IN THE SCHOOL

The third case for S(7,3). This case comes with no surprises. The procedure stays the same: the
circle is created and enlarged until the entire school is in the circle, except for one point; and the same
goes for the yard. See (Fig.4) for the solutions.

FIG. 4.

3.2. Which area is closest to each water point

The same idea can be adjusted in order to find which water point is closest to any point or area. A
randomly chosen point T is created and then three circles, the distances between the water points and
T being their radiuses. Using Geogebra’s measuring tool we can constantly supervise the distances.
So, basically we combine all the three cases studied previously, thus finding the closest water point
accurately. The point is movable hence this solution answers the question for any given point. The
procedure can be seen in Fig. 5 left
All the particular cases put together get to the core of the answer. If all the points closest to each water
point are given different colors, the graphic below is achieved. Red represents all the points closest to
R, blue- the ones closest to Q and orange for the ones within the closest range to S. In consequence, for
any random point in the school the closest water point is given by the color of the point Fig.5 right

FIG. 5.

WATER POINTS IN THE SCHOOL 5

3.3. Using the perpendicular bisector

Definition. A perpendicular bisector is a line that bisects another line segment at a right angle, through
the intersection point. Thus, we can say, a perpendicular bisector always divides a line segment through
its midpoint. The term bisect itself means dividing equally or uniformly.
The basic property of a perpendicular bisector is that it holds all the points equally distanced from the
ends of a segment. That implies the property of dividing the points from a plane into the ones closer
to each end. For example in the image we took for example R and S. UT is its perpendicular bisector.
That means all the points on the right of UT (colored in blue) are closer to S rather than R and the ones
in the red area are closer to R. This means that by using this method for any number of points we will
be able to divide the area in smaller sectors closer to each point, or in our case water points. Of course
a problem appears when some points are in the garden. We considered that any points from the outline
of it are for watering plants. (See details in Fig. 6 left)
Now, let us generalise. We applied the previous idea for the given points and obtained this sketch as
seen in Fig. 6 right. Naturally we can use more random points. As we mentioned this would indicate
some wrong cases. This is because Geogebra fails to take walls into consideration. This for example
can be fixed in the C++ solution.

FIG. 6.

6 WATER POINTS IN THE SCHOOL

4. A solution using C++ programming

Naturally, it comes to mind to simplify everything by making a program. In this chapter the code will
be separated in subprograms and specific parts and explained. The C++ language was used because it
is the one we were the most familiar with.

4.1. Creating the matrix

Below, the first subprogram has been separated. As shown by its type and name it is a void subprogram
that creates the shape of the school. It’s a void because it does not have to return any value. Inside the
function there are multiple repetitive structures, with i and j as variables that browse and create the exact
needed shape. In our subprogram the coordinates given in the problem were used, but they can be easily
changed for any random shape. In the end a matrix we will have a matrix where the points in the school
are marked with 1 or 2 (for the water points) and the others with 0.

vo id s c h o o l ()
{

f o r (i n t j = 1 1 ; j >= 6 ; j − −)
{

f o r (i n t i = 4 ; i <= 6 ; i ++) a [i] [j] = 1 ;
}
f o r (i n t j = 7 ; j >= 6 ; j − −)
{

f o r (i n t i = 6 ; i <= 9 ; i ++) a [i] [j] = 1 ;
}
f o r (i n t j = 6 ; j >= 4 ; j − −)
{

f o r (i n t i = 1 ; i <= 9 ; i ++) a [i] [j] = 1 ;
}
f o r (i n t j = 4 ; j >= 3 ; j − −)
{

f o r (i n t i = 1 ; i <= 7 ; i ++) a [i] [j] = 1 ;
}
f o r (i n t j = 3 ; j >= 1 ; j − −)
{

f o r (i n t i = 3 ; i <= 7 ; i ++) a [i] [j] = 1 ;
}

}

WATER POINTS IN THE SCHOOL 7

A slight issue appears here, regarding how many points are there. In the 2 dimensional space there are
an infinity, but in C++ the “1”s will appear at every unit, so not an infinity. But, given the reality-based
nature of the problem this does not have a big influence on the final outcome. The next part is also a
void function, and as shown by the name, it displays the matrix on the screen when called.

vo id d i s p l a y ()
{

f o r (i n t j = 1 2 ; j >= 0 ; j − −)
{

f o r (i n t i = 0 ; i <= 1 2 ; i ++)
{

/ / / cou t <<”(”<< i <<”, ”<<j <<”)”<<” ” ;
c o u t << a [i] [j] << ” ” ;

}
c o u t << ”\n ” ;

}
}

4.2. Finding the distance

The next function finds the distance between two points with the coordinates i1, j1 and i2, j2 in the
matrix. It applies the basic math formula, which we showed previously. Unlike the ones explained
before it is not a void because it returns d (the distance). calculated.

do ub l e d i s t a n c e B e t w e e n T w o P o i n t s (i n t i1 , i n t j1 , i n t i2 , i n t j 2)
{

do ub l e d = (i 1 − i 2) * (i 1 − i 2) + (j 1 − j 2) * (j 1 − j 2) ;
d = s q r t (d) ;
r e t u r n d ;

}

8 WATER POINTS IN THE SCHOOL

4.3. Finding the closest area

This function consists in traversing the entire matrix, and for each point the distance from it to each
water point is checked and the nearest water point is displayed. It is not the most efficient solution, but
it will always give a good result.

vo id t h e C l o s e s t A r e a ()
{

do ub l e l [1 0 0 1] ;
f o r (i n t j = 1 2 ; j >= 0 ; j − −)
{

f o r (i n t i = 0 ; i <= 1 2 ; i ++)
{

f o r (i n t k = 1 ; k <= n ; k ++)
{

l [k]= d i s t a n c e B e t w e e n T w o P o i n t s (p [k] . f i r s t , p [k] . second , i , j) ;
}
i n t c l o s e s t W a t e r P o i n t = minim (l , n) ;
c o u t << c l o s e s t W a t e r P o i n t << ’ ’ ;

}
c o u t << ”\n ” ;

}
}

4.4. Finding the greatest distance between a water point and any point in the matrix

This function only applies 4.2 for calculating the distance between two points and it displays the
maximum distance between each water point and any point in the matrix. As before, this program
uses one repetitive structure in another, but this is the only way to search through one matrix.

do ub l e t h e G r e a t e s t D i s t a n c e (i n t i1 , i n t j 1)
{

do ub l e maxd = 0 ;
f o r (i n t j = 1 2 ; j >= 0 ; j − −)
{

f o r (i n t i = 0 ; i <= 1 2 ; i ++)
{

i f (d i s t a n c e B e t w e e n T w o P o i n t s (i1 , j1 , i , j) > maxd && a [i] [j]==1)
{

maxd = d i s t a n c e B e t w e e n T w o P o i n t s (i1 , j1 , i , j) ;
}

}
}
r e t u r n maxd ;

}

WATER POINTS IN THE SCHOOL 9

4.5. The main function

Finally, there is the main function. Here all the subprograms are put to use and the final result is
shown. The algorithm works for any number of water points and any coordinates and that is the
greatest advantage of all. Naturally there are the declarations and readings of the different variables.
As explained in the comments alongside the code, water points are marked with 2 in the matrix and
points other than water stations are marked with 1. Then, using the functions explained at 4.2, 4.3
and 4.4 it will display the nearest points and then the ones situated furthest away. This algorithms and
functions can be used and altered for various requirements, for example if a fire starts in a point it can be
quickly determined which water source is closest; or if the plants in the school yard need to be watered:
the same way of applying the functions. Our next goal is to be able to color the points in the matrix with
3 or more colors given by the number of water points, in order to differentiate the areas closest to each
water source.

i n t main ()
{

s c h o o l () ; / / / p o i n t s i n t h e schoo l , o t h e r t h a n w a t e r p o i n t s ,
a r e marked wi th 1
c o u t << ” E n t e r t h e number o f w a t e r p o i n t s and t h e i r c o o r d i n a t e s :
” << ”\n ” ;
c i n >> n ;
f o r (i n t i = 1 ; i <= n ; i ++)
{

c i n >> p [i] . f i r s t >> p [i] . second ;
a [p [i] . f i r s t] [p [i] . second] = 2 ; / / / w a t e r p o i n t s a r e marked
wi th 2

}
d i s p l a y () ; / / / d i s p l a y o f t h e s c h o o l

c o u t << ” The c l o s e s t a r e a f o r each w a t e r p o i n t : ” << ”\n ” ;
t h e C l o s e s t A r e a () ;
c o u t << ” The g r e a t e s t d i s t a n c e i s : ” << ”\n ” ;
f o r (i n t i = 1 ; i <= n ; i ++)
{

c o u t << t h e G r e a t e s t D i s t a n c e (p [i] . f i r s t , p [i] . s econd) << ”\n ” ;
}
r e t u r n 0 ;

}

10 WATER POINTS IN THE SCHOOL

4.6. Using and adapting Lee’s algorithm

The Lee algorithm is one possible solution for maze routing problems. It always gives an optimal
solution, if one exists, but is slow and requires large memory for dense layout.

Understanding how it works. One key concept to understand is that breadth-first searches go wide,
while depth-first searches go deep. The algorithm is a breadth-first based algorithm that uses queues to
store the steps. It usually uses the following steps:
1. Choose a starting point and add it to the queue.
2. Add the valid neighboring cells to the queue.
3. Remove the position you are on from the queue and continue to the next element.
4. Repeat steps 2 and 3 until the queue is empty. Using the example of a maze solving algorithm, a
depth-first approach will try every possible path one by one until it reaches a dead end or the finish
and returns the result. However the path it returns might not be the most efficient, but simply the first
complete path to the finish that the algorithm was able to find. This basic use of the algorithm can be
developed for solving more complex and realistic problems. For example, we can add as many starting
points as we need. This is exactly the use of the algorithm we will use to solve our problem.

FIG. 7.

WATER POINTS IN THE SCHOOL 11

FIG. 8.

4.7. How the code runs.

The Geogebra solution doesn’t always give the right answer because we did not take into account that
the school might have obstacles inside, such as walls In Fig.9 left, we took some random coordinates
for the water points. The point marked in yellow is the first water point and we can see that the program
displays 1 for the points in the matrix that are closest to this water point. We marked with yellow the
closest area for the first water point and did the same thing for the other two water points. In Fig.9 right,
we took a random point in the matrix (the star) and three other water points. By using Lee’s algorithm
we took into account obstacles (school walls) and calculated the shortest path.

FIG. 9.

12 WATER POINTS IN THE SCHOOL

We can use colors for a better understanding and visualization: The blue area is closest to the hydrant
outside the school, the yellow area is closest to the top hydrant, the purple area is closest to the bottom
hydrant and the pink area is placed at the same distance from both hydrants inside the building as seen
in Fig. 10.

5. Limitations of study and future research

A main concern regarding our actual method of solving the problem geometrically regards the existence
of walls or any other such obstacles. With coding the problem turns into a classic one, but we are still
working on a solution using geometry to be able to also consider the walls and not ignore them. One idea
might be using the equation of the line. As future plans, besides the one described above we consider
to make an application that simulates Lee’s algorithm and also take into account the possibility of the
school having several floors.

FIG. 10.

WATER POINTS IN THE SCHOOL 13

6. Another approach

To solve our problem without the issue of the school, we just need to trace three segments [QR], [RS]
and [SQ]. Then we need to trace the median of each segment. After having defined the three segments,
we get the point T which is the intersection of each of the segments. Thanks to this intersection, we have
three areas and we have the limit of our topic. But the problem is harder to solve because of the school’s
walls. Our research was mostly based on the shape of the borders between the zone of the faucet R and
the one of the faucet S. Our results give three parts depending on whether the pipe touches the wall or
not. In this case (if the pipes don’t touch the corners), the frontier between the two zones is a part of

FIG. 11.

the median. In this picture we can see the blue area which represents the area from the watering point
R because every point is closer to R than S. And in pink the area which belongs to the watering point
S. But there still are the corners I and H which give us a more complicated problem to define the white
area which can’t be defined because of the median. When only the pipe of the red’s faucet touches the

FIG. 12.

14 WATER POINTS IN THE SCHOOL

corner of the school and not the blue one: We make a rotation which has as center the point H of the
faucet S in Z with Z, H and M being aligned. In consequence we have SH+HM=ZH+HM=ZM. Then
we make the median of RZ, the line HZ and the intersection will be our border (remember that Z is
movable on the arc). The weakness of this method is that it does not consider if the two pipes touch the
two corners of the school. We are going to make the distance E1 which corresponds to RI-SH. We turn
this distance into an arc with a ray corresponding to the distance E1, taking the point I as the center,
the point that won’t move. We take the intersection of the median of [HF1] with the half-line [F1I) to
find G1 who’s at the same distance to the two faucets. Then we make the same process with the other

FIG. 13.

watering point to define all the limits. As you can see in Fig.20, the limit between the area from R and
S (green sorts) isn’t a line but a curved line composed with 3 parts.

FIG. 14.

7. Conclusions

The results obtained with the two entirely different methods can be observed both in Fig. 10 and Fig.14.

	1 Introduction
	2 A mathematical solution
	Formula

	3 An efficient method using Geogebra
	3.1 The greatest distance between a water point and a point in the school
	Extensive scheme.

	3.2 Which area is closest to each water point
	3.3 Using the perpendicular bisector
	Definition.

	4 A solution using C++ programming
	4.1 Creating the matrix
	4.2 Finding the distance
	4.3 Finding the closest area
	4.4 Finding the greatest distance between a water point and any point in the matrix
	4.5 The main function
	4.6 Using and adapting Lee's algorithm
	Understanding how it works.

	4.7 How the code runs.

	5 Limitations of study and future research
	6 Another approach
	7 Conclusions

