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Durance” Pertuis, France

Teachers : Ariana Stanca Vacaretu, Hubert Proal

Researchers : George Turcas, „Babes-Bolyai” University of Cluj-Napoca; Yves Pape-
gay, Université de Nice-Sophia Antipolis

[MATh.en.JEANS 2021-2022 | Colegiul Nat, ional „Emil Racovit, ă”, Lycée „Val de Durance”]
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Research topic

After pouring the maximum quantity of sand on top of a horizontal, elevated support, what
will the crests of the thereby formed dunes look like?

1 Theoretical basis

Since in this problem a physical phenomenon occurs, our study is based on an initial as-
sumption that enabled us to transpose a realistic phenomenon into a mathematically de-
scribed one.

Constant angle assumption The slope, denoted α, of the dune has the same value in any
point on its surface, regardless of being closer or farther away from its top. Below you can see
a vertical section through the dune.

Figure 1: A vertical section through the dune

In order to study how the mathematical conditions are to be set in general, we took a
simple shape, an acute angle infinitely long (see figure 2). The edges of the support are blue
in the drawing, while the crest resulted after pouring the maximum quantity of sand above
the support is shown in red.

2D equation If we take an arbitrary point P on the crest and its projection on the base plane,
finding the mathematical equation of the crest in 2D actually means finding the equation of
V Q. The projections of P on the edges of the support are M and N , respectively. Since PQ is
perpendicular to the plane of the support, the projections of Q on the edges of the support
will be M and N as well.

By doing this, we obtained the dihedral angles which give the slope of the dune: ∡P MQ
and ∡P NQ, which are equal, according to the Constant angle assumption. Because in the
right triangles △PQM and △PQN , PQ is a common side and also the angles at the bottom
are equal, these triangles are congruent. Hence, QM =QN . In other words, the projection of
the crest is equally away from the edges.
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Figure 2: Acute angle support

Conclusion The mathematical equation of the crest in 2D for any given support shape
can be obtained by setting the condition that it must be equally distanced from the edges of
the support. This enables us to obtain the equation of crests for strange support shapes, even
curved ones.

3D equation The height of point P , denoted z is determined from one of the triangles, such
as △PQM , to be z = PQ = MQ tanα. Therefore, in general, the height of the crest is the
distance to the edge multiplied by the tangent of the slope, considered a constant value.

2 Experimental approach

In order to prove that our initial assumption is offers a close enough model of the reality, we
performed a series of experiments.

2.1 Triangle experiment

At first, we poured sand over the base of a triangle in order to see the crest lines (see figure 3).
Even if it is approximate, the projections of the crest lines look as provided by the hypothesis
lines. This result confirms that the solution of our topic is based on equidistance for the sand
pile to the edges in order to be physically stable.

2.2 L-shape

Then we poured sand on a non-convex shape: The L (see figure 4). We were surprised by the
rounded shape we get in the center. However, this is understandable acknowledging that in
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Figure 3: The triangle experiment

this case the central part of the dune is not anymore between two lines, but between a line
and a point, because in the center of the figure the sand can fall either over one of the outer
sides, which are segments, or over the inner point of the corner.

Figure 4: The L-shape experiment

2.3 Parabola

In order to find out whether our theoretical basis works also in the case we encountered in
the previous experiment, we performed another experiment, consisting in pouring sand on
a surface bounded by a linear edge and a point (see figure 5). Beforehand, however, we drew
the expected crest, which in this case is a parabola, the curve equally distanced from a line
and a point. In order to see it clearly, we raised sticks prom point to point.

Conclusion As seen in the experiments, our hypothesis is an appropriate approximation of
reality and we can therefore use it in out following research.
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Figure 5: The parabola experiment

3 Polygonal shapes

3.1 Triangle

The support is a triangle, determined by three points. For simplicity, their respective coordi-
nates were chosen A(xA , y A), B(0,0) and C (xC ,0). The lengths of the sides of the triangle can

Figure 6: The triangle
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be written as
a = xc

b =
√

(xA −xC )2 + y2
A

c =
√

x2
A + y2

A

The equations of the edges of the support can be written as

BC : y = 0, 0⩽ x ⩽ xC

AB : x y A − y xA = 0 ⇒ AB : y = y A

xA
x, 0⩽ y ⩽ y A

AC : −x y A + y(xA −xC )+xC y A = 0 ⇒ AC : y = y A

xA−xC
x − xC y A

xA−xC
, 0⩽ y ⩽ y A

The intersection point of the bisectors in a triangle, that in this case is the intersection of
the three crest, was labelled I . The point lying on the intersection between AI and BC was
considered M . The bisector theorem, applied in triangle △ABC gives

MC

B M
= b

c
⇒ MC

B M
+1 = b

c
+1 ⇒ a

B M
= b + c

c
⇒ B M = ac

b + c
(1)

Therefore, taking into account that xB = 0 and M ∈Ox, we can write

xM = ac

b + c
(2)

Applying the bisector theorem again in triangle △AB M gives us

AI

I M
= c

B M
= k (3)

k is the factor of division of AM segment and can be obtained from equations (1) and (3) as

k = b + c

a
(4)

Using the vectorial formula of dividing a segment in a given fraction gives us

B⃗ I = 1

k +1
B⃗ A+ k

k +1
B⃗ M (5)

By projecting equation (5) onto the Ox and O y axes, using equation (2) and taking into con-
sideration that the coordinates of point B are (0,0) and that yM = 0, we obtain

xI = 1

k +1
xA + k

k +1

ac

b + c
= axA + cxC

a +b + c

yI = 1

k +1
y A = ay A

a +b + c

[MATh.en.JEANS 2021-2022 | Colegiul Nat, ional „Emil Racovit, ă”, Lycée „Val de Durance”]
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which give us the coordinates of point I as

I
( axA + cxC

a +b + c
,

ay A

a +b + c

)
Using the formula of a line that passes through two points and applying it for the pairs of
points (A, I ), (B , I ) and (C , I ), whose coordinates are known, we obtain

AI :
x −xA

xI −xA
= y − y A

yI − y A
⇒ AI : x(−by A − c y A)− y(cxC −bxA − cxA)+ cxC y A = 0

AI :
x −xB

xI −xB
= y − yB

yI − yB
⇒ B I : xay A − y(axA + cxC ) = 0

AI :
x −xC

xI −xC
= y − yC

yI − yC
⇒C I : xay A − y(axA −axC −bxC )−axC y A = 0

Rearranging the equations and setting the appropriate conditions with regards to I gives us

AI : y = −by A − c y A

cxC −bxA − cxA
x + cxC y A

cxC −bxA − cxA
,

ay A

a +b + c
⩽ y ⩽ y A

B I : y = ay A

axA + cxC
x, 0⩽ x ⩽

axA + cxC

a +b + c

C I : y = ay A

axA −axC −bxC
x − axC y A

axA −axC −bxC
,

axA + cxC

a +b + c
⩽ x ⩽ xC

which describe the equations of the crests that form over a triangular support.

3.2 Square

Parameter:

1. side length - l

In this case, the support is a square determined by points with coordinates chosen for sim-
plicity A(0,0), B(l ,0), C (l , l ) and D(0, l ). The equations of the edges are

AB : y = 0, 0⩽ x ⩽ l
BC : x = l , 0⩽ y ⩽ l
C D : y = l , 0⩽ x ⩽ l
AD : x = 0, 0⩽ y ⩽ l

Because the bisectors in a square coincide with the diagonals, the equations of the crests
can be written as

AC :
x −0

l −0
= y −0

l −0
⇒ AC : xl = yl

which gives us
AC : y = x, 0⩽ x ⩽ l (6)
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Figure 7: The square

and

BD :
x −0

l −0
= y − l

0− l
⇒ BD : −xl = l (y − l )

which gives us
BD : y = l −x, 0⩽ x ⩽ l (7)

Equations (6) and (7) describe the crests that form in this case.

3.3 Rectangle

Parameters:

1. length - L

2. width - l

In this case, the support is a rectangle determined by points with coordinates chosen for
simplicity A(0,0), B(L,0), C (L, l ) and D(0, l ). The two points where groups of three crests
intersect were labelled P and Q. The equations of the edges are

AB : y = 0, 0⩽ x ⩽ L
BC : x = L, 0⩽ y ⩽ l
C D : y = l , 0⩽ x ⩽ L
AD : x = 0, 0⩽ y ⩽ l

Since the crest is the line that is equally distanced from two edges, as demonstrated in the
theoretical basis, the PQ segment of the crest has the equation

PQ : y = l

2
(8)

Since P also belongs to the crests DP and AP , it means that the distance from P to AB , which
is l

2 , as given by the previous equation, is equal to the distance from P to the segment AD ,
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Figure 8: The rectangle

meaning that P is of coordinates P ( l
2 , l

2 ). Through an analogue reasoning, the equations of Q

are obtained as Q(L − l
2 , l

2 ). Now that all points have determined coordinates, the other four
crests can be determined using the formula of a line that passes through two points in the
plane

AP :
x −0

l/2−0
= y −0

l/2−0
⇒ AP : y = x, 0⩽ x ⩽

l

2

DP :
x −0

l/2−0
= y − l

l/2− l
⇒ DP : y =−x + l , 0⩽ x ⩽

l

2

CQ :
x −L

L− l/2−L
= y − l

l/2− l
⇒ AP : y = x −L+ l , L− l

2
⩽ x ⩽ L

BQ :
x − l

L− l/2−L
= y −0

l/2−0
⇒ AP : y =−x +L, L− l

2
⩽ x ⩽ L

and also equation (8) can be restricted to the segment PQ and written as

PQ : y = l

2
,

l

2
⩽ x ⩽ L− l

2

3.4 L-shape

The L-shape is a polygon ABC DEF . Its dimensions were taken L1, L2, l1 and l2, as in figure
9. The coordinates of these points were taken as A(0,0), B(L1,0), C (L1, l1), D(l2, l1), E(l2,L2)
and F (0,L2). In an L-shaped support intervene many crests, many of which have the same
equations as in the rectangle shape and have therefore not been analysed anymore. In the
corner of L, the shape of the crest has been carefully studied. As observed in the experiments,
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two distinct curves form here. Their point of intersection was marked K and represents the
point that is equally distanced from the three sides where sand can fall: AB edge, AF edge
and point D . An arbitrary point of coordinates (x, y) is on the curve between S and K if the

Figure 9: The L-shape

distance from it to the AF edge, which is x, equals the distance from it to point D , which,
assuming that D is of coordinates D(l2, l1) can be written as√

(l1 − y)2 + (l2 −x)2 (9)

Equalising the two distances and doing the calculations gives us the equation of the curve

x = 1

2l2
y2 − l1

l2
y + l 2

1 + l 2
2

2l2
(10)

which is the equation of a parabola, however rotated by 90◦.
An arbitrary point of coordinates x and y is on the curve between K and T if the distance

from it to the AB edge, which is y , equals the distance from it to point D , which can be writ-
ten as in equation (9). Equalising the two distances and doing the calculations give us the
equation of the curve

y = 1

2l1
x2 − l2

l1
x + l 2

1 + l 2
2

2l1
(11)

that is also a parabola.
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Page 11



4 Circular shapes

The last category of shapes that we have studied are curved-shaped supports. Covering all of
them from a simple half disc to a circle from which two inner circles have been cut out, they
are presented in the order of complexity.

4.1 Half disc

Parameters:

1. radius of the disc - r

For simplicity, the sysem of axes has been chosen so that its origin coincides with the center
of the disc and the Ox axis is overlapped with the straight edge. An arbitrary point P (x, y) is

Figure 10

on the crest if the distance from P to the straight edge is equal to the distance to the curved
edge. The first of this distances can be written as

y

while drawing the radius of the circle that passes through P and taking into account that the
radius of a circle is perpendicular to its outline, the second distance can be written as

r −
√

x2 + y2

Equalising the two quantities gives us

y = r −
√

x2 + y2 ⇔
√

x2 + y2 = r − y ⇒ x2 + y2 = r 2 −2r y + y2 ⇔ 2r y =−x2 + r 2
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Finally, restricting the domain of our equation to [−r,r ], so that we have crest only inside the
shape, the equation of the crest is as follows

y =− 1

2r
x2 + 1

2
r, −r ⩽ x ⩽ r (12)

which is the equation of a parabola.

4.1.1 3D expansion

As demonstrated in the theoretical basis, the height of the crest is the distance to the edge
multiplied by the tangent of the slope. It is correct to use any of the distances to the edge,
but for simplicity, we can take the distance to the straight edge, which is y . Therefore, the z
equation of point P can be written as

z = y tanα (13)

Combining equations (12) and (13) gives us a system of equations that describes the crest in
3 dimensions 

y =− 1

2r
x2 + 1

2
r

z = y tanα

, −r ⩽ x ⩽ r

4.2 Partially cut disc

This shape is a disc in which a decentered line was drawn and the part on one side of the line
has been removed.

Parameters:

1. radius of the disc - r

2. distance from the center of the circle to the cut - d , with d < r

Similarly, a system of equations was chosen so that the Ox axis is overlapped with the straight
edge and the center of the disc being situated on the O y axis. An arbitrary point P (x, y) is on
the crest if the distance from P to the straight edge is equal to the distance to the curved edge.
The first of this distances can be written as

y

while drawing the radius of the circle and taking into account that the radius of a circle is
perpendicular to its outline, the second distance can be written as

r −
√

x2 + (y −d)2
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Figure 11: Partially cut disc

Equalising the two quantities gives us

y = r −
√

x2 + (y −d)2 ⇔
√

x2 + (y −d)2 = r − y ⇒

⇒ x2 + y2 −2d y +d 2 = r 2 −2r y + y2 ⇔ 2y(r −d) =−x2 + r 2 −d 2

Finally, the equation of the crest is as follows

y =− 1

2(r −d)
x2 + r +d

2
(14)

which is also a parabola. From the plot we observe that the restriction we must set in order
to obtain the proper equation is y ⩾ 0, which substituted in equation (14) gives

− 1

2(r −d)
x2 + r −d

2
⩾ 0 ⇒ x2 < r 2 −d 2 ⇒ x ∈ [−

√
r 2 −d 2,

√
r 2 −d 2]

4.2.1 3D expansion

As demonstrated in the theoretical basis, the height z of the point P equals the distance to
one edge (let’s take the distance to the straight edge, for simplicity) times the slope

z = y tanα (15)

Combining equations (14) and (15) gives us a system of equations that describes the crest in
3 dimensions
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
y =− 1

2(r −d)
x2 + r +d

2

z = y tanα

, −
√

r 2 −d 2 ⩽ x ⩽
√

r 2 −d 2

4.3 Crescent

The crescent is a shape that is determined by two circles.
Parameters:

1. radiuses of the circles - r1, r2

2. distance between the centres of the two circles - d , with d < r1 + r2

The system of axes has been chosen so that its origin coincides with the center of the circle
of radius r1, and the O y axis passes through the center of the circle of radius r2. An arbitrary

Figure 12: The crescent

point P (x, y) is on the crest if the distances from P to the two circles are equal. Assuming that
in any circle, the radius is perpendicular to the outline, by drawing the radiuses of the two
circles, that pass through P , we obtain the distance from P to the circle of radius r2√

x2 + (y −d)2 − r2
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and the distance from P to the circle of radius r1

r1 −
√

x2 + y2

Setting the equality condition between the two, we obtain the equation of the crest for the
crescent, in implicit form √

x2 + (y −d)2 − r2 = r1 −
√

x2 + y2 (16)

The restriction that applies here so that the crest does not exceed the limits of the support, is
y ⩽ y AB .

4.3.1 3D expansion

As demonstrated in the theoretical basis, the height z of the point P can be written as the
horizontal distance to the edge times the slope of the dune

z = (r1 −
√

x2 + y2) tanα (17)

In order to obtain the correct restriction for this crest, so that it does not exceed the terminus
points of the crescent (denoted A and B in figure 12), we have to find the y coordinate of
points A and B , which, due to symmetry, are equal. These points fulfill the property that they
lay on both the two circles that make up the support, therefore we can write

r 2
1 = x2 + y2

r 2
2 = x2 + (y −d)2

Solving this system of equations gives

y = d 2 + r 2
1 − r 2

2

2d
(18)

Combining equations (16) and (17) and restricting to y ⩽ y AB , according to equation (18),
gives us a system of equations that describes the crest of the dune that forms over a crescent-
shaped support 

√
x2 + (y −d)2 − r2 = r1 −

√
x2 + y2

z = (r1 −
√

x2 + y2) tanα
, y ⩽

d 2 + r 2
1 − r 2

2

2d

4.3.2 Drilled circle

Another interesting shape to study is a circle from which another smaller circle inside has
been cut out. However, this shape is an alteration of the crescent, obtained by simply reduc-
ing the r2 radius so that r2 < r1 and ensuring that the entire circle of radius r2 fits within the
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Figure 13: Drilled circle

other one. Since only numerical values have been modified, the mathematical equations that
describe the crest remain the same as for the crescent, even in 3 dimensions, with the men-
tion that the equations do not have to be restricted anymore, because in this case, the crest is
continuous, surrounding the smaller circle completely.

√
x2 + (y −d)2 − r2 = r1 −

√
x2 + y2

z = (r1 −
√

x2 + y2) tanα

4.4 Double-drilled circle

The last and most complex shape that is covered in this article is a circle from which two
smaller circles inside have been cut out, fulfilling the property that their respective centers
are collinear.

Parameters:

1. radius of the big circle - R

2. radiuses of the cuts - r1 and r2, with r1 + r2 < R

3. distance between the centres of the two small circles to the center of the big circle - d1

and d2, with d1 < R − r1 and d2 < R − r2

In this case, the system of equations has been chosen so that its origin coincides with the
center of the big circle and the O y axis passes through the centers of all circles. As observed in
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the practical experiments, three distinct crests form, that all intersect in two points, labelled
A(xA , y A) and B(xB , yB ). The crests were labelled a, b and c, as in figure 14. Due to symmetry,
the two points fulfill the property that y A = yB .

Figure 14: Double drilled circle

The upper and lower crests were studied in the crescent shape, because they stand be-
tween two circles. However, they have to be restricted according to the points A and B .
Hence, taking into consideration that now the radiuses have been labelled differently, crests
(a) and (c) are described by the following systems of equations

(a)


√

x2 + (y −d1)2 − r1 = R −
√

x2 + y2

z = (R −
√

x2 + y2) tanα
, y ⩾ y A

(c)


√

x2 + (y −d2)2 − r2 = R −
√

x2 + y2

z = (R −
√

x2 + y2) tanα
, y ⩽ y A

As for the crest (b), its equation is similar to the others, with the exception that in this case, the
crest is outside both circles, unlike the previously studied crests, that were inside one circle
and outside the other. The distance from P to the edge of the circle of radius r1 can be written
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as √
x2 + (y −d1)2 − r1

and the distance from P to the edge of the circle of radius r2 can be written as√
x2 + (y −d2)2 − r2

Equalizing these two equations gives us√
x2 + (y −d1)2 − r1 =

√
x2 + (y −d2)2 − r2 (19)

Applying the same procedure as in the previously studied shapes, we obtain the height z of
the crest as

z = (
√

x2 + (y −d1)2 − r1) tanα (20)

Combining equations (19) and (20) and setting the proper restrictions gives us

(b)


√

x2 + (y −d1)2 − r1 =
√

x2 + (y −d2)2 − r2

z = (
√

x2 + (y −d1)2 − r1) tanα
, x ∈ [xA , xB ]

Conclusion

In conclusion, our study focused only on certain categories of shapes from the multitude that
exist. We chose to study shapes bounded by lines and/or circles because in these cases the
equidistance conditions are straightforward and do not require complex calculus knowledge.
However, this study could be extended to other types of edges, such as: sinusoidals, expo-
nentials, elliptics, parabolas or hyperbolas in order to provide a more complete solution to
the problem of dunes.
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