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Sébastien Castagnedoli

Researcher:

Serge Dumont, Professor at Nı̂mes University
George T, urcas, , Professor at Babes, -Bolyai University

Schools:

Colegiul Nat, ional ”Emil Racovit, ă” Cluj-Napoca, Romania
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1 Research Topic

In order to model the management of fish stocks, we consider the determin-
istic Schaefer model (1954). For that, we take into account a variable M (in
tons) which represents the maximum biomass that can live in a certain site and
a variable r which represents an intrinsic rate of growth (specific to each species
of fish).

If we consider, for n ≥ 1 the variable Xn, which is the biomass for the year
n, the model gives the biomass for the year n+1:

Xn+1 = Xn + r ·Xn ·
(
1− Xn

M

)
− C,

where C is the amount fished by humans.

Let X0 be the initial biomass (given by a measurement).

Can we model, by modifying the parameters (initial biomass, the rate of
reproduction, amount of fish in a year), all the possible situations (extinction,
uncontrolled growth of the species)?

2 Useful Tools

For the first approach, we used a C++ algorithm to help get a general idea
of the problem. The program below shows the biomass value for all the years
until extinction, after reading as input: the maximum biomass (M), the growth
rate (r), the fished quantity (C), and the initial biomass (X0).

i n t M,C;
double r ;
double x [ 1 0 0 0 ] ;

void nextgen ( i n t i )
{

x [ i ] = x [ i −1] + ( r ∗ x [ i −1] ∗ (1 − x [ i −1]/M) ) − C;
}

i n t main ( )
{

c in >> M >> r >> C >> x [ 0 ] ;
i n t i =0;
whi l e ( x [ i ] > 0 )
{

i++;
nextgen ( i ) ;
cout << ” ” << x [ i ] ;

}
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cout << i ;
r e turn 0 ;

}

3 Solution

3.1 First Approach

This approach belongs to Diana Harambas, . It was done with the help of
Bianca Cris,an.

3.1.1 Extinction

The first question we asked ourselves was regarding when will the species go
extinct. Hence, we calculated the value of Xn for which Xn+1 is 0, i.e. we have

extinction at the (n+ 1)
th

generation.

Solving the following second degree equation (1+ r) ·x− r
M ·x2 −C = 0, we

obtain the roots:

(1 + r) +
√
(1 + r)2 − 4rC

M

2r
M

and
(1 + r)−

√
(1 + r)2 − 4rC

M

2r
M

.

Obviously, the biomass is positive or null, but never negative. Hence, we
need the positive root of the equation. Luckily, both solutions turned out to be

positive, as 1 + r >
√
(1 + r)2 − 4rC

M . If there is an n for which Xn has one of

the values above, then the next year the species will go extinct.

3.1.2 Particular case: C = 0

This is the case where no fishing is done and the natural growth of the species
is followed. When representing the growth on Geogebra, the graphs converge to
M, the maximum biomass. See Figure 1 below:
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Firstly, let us study the variation and possible equilibrium points of this case.
Between generation t and t + 1 we have a biomass variation of Xt+1 − Xt =
r ·Xt · (1− Xt

M ). Let such a variation be represented as:

∆x =
dx

dt
= r · x · (1− x

M
)

We can find the equilibrium points by solving ∆x = 0. Thus, 0 and M
are the equilibrium points. This means that for any t, if Xt is 0 or M, then
∀n ≥ t,Xn = Xt.

Knowing that M is the maximum biomass that can be in the lake, we can
state that x ≤ M ⇒ x

M ≤ 1 ⇒ ∆x = r·x·(1− x
M ) ≥ 0. As the variation is always

positive, we can affirm that the sequence (Xn)n≥1 is ascending (or constant). For
any n, it is known that 0 ≤ Xn ≤ M , which gives the last necessary condition
for stating that (Xn)n≥1 is convergent. Obviously, the sequence must converge
to an equilibrium point, so to either M or 0. Given that (Xn)n≥1 is ascending,
we conclude that

lim
n→∞

Xn = M.

So, in a case where no fishing is done, if a fish species starts out with any
strictly positive initial biomass, after many generations, the yearly biomass will
end up as close to M as possible.

The question one has to ask oneself is: Is this biologically accurate? We have
to consider environmental parameters as well, i.e. the lake dimension, the water
volume, but most importantly the growth rate of the edible resources. In an
ideal case, where the food resources follows a recurrence relation similar to the
fish species one and has a greater growth rate, then there will forever be enough
food for the fish stock. But, in reality, this might not be the case.

Formula: The differential equation dx
dt = rx(1 − x

M ) allows us to calculate
the value of Xt,∀t ≥ 1 by using basic integration rules. Thus,

Xt =
M ·X0 · er·t

M +X0 · (er·t − 1)
,∀t ≥ 1.

Remarks: We have considered a small rate r that does not let our fish
biomass exceed the maximum possible M. But by analysing x+rx(1− x

M ) > M ,

we realised that if there is any n ≥ 1 for which r > M
Xn

, then Xn+1 > M , making
it impossible for the species to live, and leading to a negative variation and a
sudden drop in the biomass of Xn+2 (the biological species will fight over re-
sources and space).

The graph of such a case can take many forms - forms describing a growth
which we considered uncontrollable - but it is easily visible that the values
alternate from being greater than M to being less, as shown in Figures 2,
3, 4 and 5. Figure 5 especially is a good example of what we considered as
uncontrollable growth.
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Here the rate is 2, the initial biomass is 11 and the maximal one is 70. The
complete Geogebra graph shows all values Xn up to n = 1000.

In Figure 3, the rate is now 2.2, and the other values are kept the same.

Figure 4 presents the same set of parameters for the initial biomass, the max-
imal biomass and number of generations. But because we want to emphasize
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what great impact has changing one parameter (namely, the intrinsic growth
rate), we set r = 2.5.

In Figure 5, the rate is now 2.8, and the other values are the same. It is easily
visible that this growth does not seem to follow a pattern, at least not when
looking at a small data set of just 1000 generations (on the figure above, just
360 generations were illustrated, to fit the image format and increase visibility
on individual values).

3.1.3 General case: Arbitrary C

This is the case where the fished amount C is an arbitrary nonzero number.
Of course, the inequality C < M is true. From our Geogebra graphs and data
tests done with the C++ code, we obtained mostly sequences convergent to 0,
so cases where the species will go extinct. This time, the variation differential
equation is

dx

dt
= rx(1− x

M
)− C,

making it harder to integrate if C is arbitrary and not a function of x.

dx

dt
= rx(1− x

M
)− C ⇐⇒ dx

rx(1− x
M )− C

= dt ⇐⇒ dx
rx2

M − rx+ C
= −dt ⇐⇒

M

r
· dx

x2 −Mx+ CM
r

= −dt ⇐⇒ M

r
· dx

(x− M
2 )2 − M2

4 + CM
r

= −dt ⇐⇒

Let u = x− M
2 . This simplifies our calculations, as now we have to integrate

1

u2 +M(Cr − M
4 )

.

So, we have this new mathematical relation:

M

r
·
∫

du

u2 +M(Cr − M
4 )

= −
∫

dt ⇐⇒ M

r
·
∫

du

u2 +M(Cr − M
4 )

= −t+ α,

where α is a constant (found from the initial conditions). How to solve this
depends on the sign of M(Cr − M

4 ).
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Case 1: C
r = M

4

The new equation is:

M

r
·
∫

du

u2
= −t+ α1

Basic integration rules lead us to the following equivalent equations:

−M

r
· 1

ut
= −t+ α1 ⇐⇒ ut =

M

(t− α1)r
⇐⇒ Xt =

M

2
+

M

(t− α1)r

The constant should not be independent of X0, as it is found by analysing
the initial biomass value (generation t = 0).

X0 =
M

2
+

M

−α1r
⇐⇒ X0r

M
− r

2
= − 1

α1
⇐⇒

α1 =
2M

Mr − 2X0r

Thus, the value of the biomass of any t-th generation can be determined by
the formula:

Xt =
M · [t · r · (M − 2X0)− 4X0]

2[t · r · (M − 2X0)− 2M ]
.

Case 2: C
r > M

4

In this case, we can use another notation to simplify the equation. Hence,

let N be a N =
√
M(Cr − M

4 ). That gives us the equivalent equation:

M

r
·
∫

du

u2 +N2
= −t+ α2.

When it comes to solving it, we use the calculus knowledge we have.

M

r

1

N
· arctan(ut

N
) = −t+ α2 ⇐⇒ ut

N
= tan(

Nr(−t+ α2)

M
) ⇐⇒

ut =

√
M(

C

r
− M

4
) · tan(

r ·
√
M(Cr − M

4 )(−t+ α2)

M
) ⇐⇒

Xt =
M

2
+

√
M(

C

r
− M

4
) · tan(

r ·
√
M(Cr − M

4 )(−t+ α2)

M
),

where α2 can be found from the initial data, i.e. from X0.

α2 =

√
M(Cr − M

4 ) · arctan( (2X0−M)·
√

M(C
r −M

4 )

2M ·(C
r −M

4 )
)

r · (Cr − M
4 )

.

Putting together these last two formulas, we obtain that, at the t-th gener-
ation, the biomass value will be:

Xt =
M

2
+

√
M(

C

r
− M

4
)·tan(

r ·
√

M(Cr − M
4 )(−t+

√
M(C

r −M
4 )·arctan(

(2X0−M)·
√

M(C
r

−M
4

)

2M·(C
r

−M
4

)
)

r·(C
r −M

4 )
)

M
).
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Case 3: C
r < M

4

In this particular case, M(Cr − M
4 ) < 0, making us define the helpful pa-

rameter N as N =
√
M(M4 − C

r ). The equation now looks like the following:

M

r
·
∫

du

u2 −N2
= −t+ α3.

Solving this requires much more advanced knowledge. It is almost basic
calculus until we obtain the relation below:

ln

∣∣∣∣ut −N

ut +N

∣∣∣∣ = 2Nr(−t+ α3)

M
⇐⇒

∣∣∣∣ut −N

ut +N

∣∣∣∣ = e
2Nr(−t+α3)

M .

This case is what we saw as uncontrollable, because we cannot analyse
whether ut is greater or smaller than N . There might be situations where, for
some generations the biomass Xt is smaller than M

2 +N , and for other genera-
tions, greater. We couldn’t find a way to find out when such changes will occur,
therefore there was no way to determine which is the right formula for this case.
We added this on the list of next goals within this research topic.

3.1.4 General case: C = p ·Xn

This is the case where the fished quantity is calculated every year, as a part
p of that generation’s biomass, meaning that C = p ·Xn. Moreover, this is most
likely to be the situation closest to reality, as it is the most reasonable when it
comes to choosing the fishing biomass with regards to the current quantities.

The recurrence relation here is:

Xn+1 = Xn + r ·Xn · (1− Xn

M
)− p ·Xn ⇐⇒

Xn+1 = Xn + r ·Xn · (r − p

r
− Xn

M
).

The steps we are going to follow are the same as in subsection 3.1.2. Let’s
study the the variation and possible equilibrium points. Defining the variation
between generation t+ 1 and t in the same way as in the previous subsections,
we are able to state that ∆x = dx

dt = r · x · ( r−p
r − x

M ).

The equilibrium points are the positive real roots of ∆x = 0. Hence, 0 and
M ·(r−p)

r are the values we were looking for.

Now, as for the sign of ∆x - sign which determines whether the sequence is
ascending or descending -, we can easily see that it is all a matter of comparing

Xt to
M ·(r−p)

r . While Xt <
M ·(r−p)

r , then the sequence is ascending. Else, while

Xt >
M ·(r−p)

r , then the sequence is descending. But because M ·(r−p)
r is an equi-

librium point and supposing X0 is non-null, then the sequence should converge

to M ·(r−p)
r .
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We wanted to find the formula for any Xt, by solving the differential equa-
tion:

dx

dt
= r · x · (r − p

r
− x

M
).

We will arrive to a logarithmic equation involving a modulus and just as
we cannot state the monotony of the sequence because we must compare Xt to
M ·(r−p)

r , now we cannot decide the sign of the expression within the modulus.

3.2 Second Approach

This approach belongs to Petru Săveanu and Giret Hugo.

We took the functions g and f where:

g(x) = x · (r + 1)− r · x2

M − C and f(x) = r · x− r · x · x
M − C

g(x) = x+ f(x)

In other words, the function f is the difference between 2 years and

∆ = r2 − 4 · r · C

M

We chose to study the function f because it explains the evolution from year
to year. For example, if the function is positive, it means an increase in quantity,
if it is negative it will lead to extinction, and if it is once zero, the result will be
stagnation.

3.2.1 Case 1: ∆ < 0

∀x, f(x) < 0 so, g(x) = x+ f(x) < x
Then X0 > X1 > ... > Xn

Considering the graph of the function f, the differences will get bigger and
bigger, because by approaching the quantity of 0, the origin of the system, the
graph tends to minus infinity, so the result will be obvious extinction.
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3.2.2 Case 2: ∆ = 0

C

r
=

M

4
⇒ f(

M

2
) = r · M

2
· (1−

M
2

M
)− C =

r ·M
4

− C = 0

The only point where f(x) = 0 is M
2 If X0 is less than M

2 the result will be
extinction, because we are in the same situation as in the previous case, but we
try to find the balance. Thus, we will look for the points that bring the biomass
below the value of M

2 , trying to calculate the distance from M
2 , called ”a”.

g(
M

2
+a) <

M

2
⇐⇒ M

2
+a+(

M

2
+a)·r·(1−

M
2 + a

M
) <

M

2
⇐⇒ a < a2·M

r
⇐⇒ M

r
< a

This means that if X0 belongs to the interval (M2 , M
2 + M

r ), g(x) > M
2 , but

because f(x) ≤ 0, X0 < X1 < ..... , the decrease limit being M
2 . So ∀x, if X0

does not belong to that range, the result will be extinction.

3.2.3 Case 3: 0 < ∆ ≤ 1

We chose this case because we can choose a clearly defined interval to obtain
balance, and uncontrolled growth is impossible. We used the graph of the func-
tion f and the first derivative of the function g to obtain intervals of monotony.
g′(x) = r+ 1− x · 2·r

M For any x in range of x1 and x2, where f(x1) = 0 and
f(x2) = 0, g′(x) >= 0

g′(x2) = r + 1− (
r +

√
∆

2·r
M

) · 2 · r
M

= r + 1− r −
√
∆ = 1−

√
∆
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x2 > x1 ⇒ g′(x1) > g′(x2) = 1−
√
∆ ≥ 1− 1 = 0

⇒ x1 = g(x1) < g(x) < g(x2) = x2 if x1 < x < x2 .

Using f(x) > 0 where x1 < x < x2 we obtain: x1 < X0 < X1 < X2 < ..... <
Xn < x2 , balance, if x1 < X0 < x2 and x1 > X0 > X1 > X2 > ..... > Xn

meaning extinction if X0 < x1. As in the previous case, we have a limit, this
being x2.

For X0 > x2 we can obtain balance or extinction, depending on the distance
from x2.

The abscissa of the middle of the of g(x) : m = M(r+1)
2r . So by using symmetry

we obtain an interval of balance : x1 < X0 < 2m− x1.

3.2.4 Case 4: ∆ > 1

This is the only situation when Xn could be greater than M. Due to the very
large variation of values in two consecutive years, we studied the situation when
X1 is greater than M.

We took the function h, where h(x) = g(x)−M and we calculated the roots
of the equation.

h(x) = g(x)−M = x · (r+1)− r · x

M
−C −M ⇒ ∆′ = (r+1)2 − 4 · r · C +M

M

Then we consider the points P = r+1−
√
∆′

2· r
M

and W = r+1+
√
∆′

2· r
M

for which

g(P ) = M and g(W ) = M .

Because X0 is smaller than M, and g(x) > x only if x1 < x < x2, we will
create an interval by joining the interval (x1,x2) with the interval (P,W). If X0

belongs to that interval, X1 ≥ M .

Using the 4 cases we can get all three possible situations.

3.2.5 Maximal fishing

The maximal fishing is the fishing value where we fish as much as fish we can
without causing the extinction of the specie.
For Xn < M

2 and Xn > M
2 + M

r :

Cmax =
−M · ( 2rXn

M

2

r
)− r2

4r
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As we have previously demonstrated, for Xn > M
2 and Xn < M

2 + M
r , the

maximal fishing is obtained when ∆ = 0 and equals to :

Cmax =
rM

4

4 Conclusions

Looking at the first approach, we can observe that formulas can be found,
but they are different and depend on the relationship between the given pa-
rameters C, M and r. Moreover, some cases are harder to follow and, from the
knowledge we possess now, can be considered as cases of uncontrollable growth.

From our previous work, we observed different types of curve depending on
the ∆ = r2−4 · r · C

M value: The extinction curve for ∆ < 0, the constant curve,
the ”alternating”/”sinusoidal” curve, the scattered one, etc.

By introducing a new environmental variable Vn (which can only take the
values 0.5, 1, and 1.5) to this extent:Xn+1 = (Xn + r ·Xn ·

(
1− Xn

M

)
−C) · Vn,

we obtain unusual cases, creating new types of curves that seems non-periodic
and hard to define. Studying this evolution type is one of our next research goals.

The Schaefer Model is not a perfect one: it is a discrete mathematical model,
meaning that the fish population is calculated every year; in real life, environ-
mental facts and events could influence so much that the fish could disappear in 6
months, for example, and so the model would not work. To be more accurate, we
should take more parameters (related to the aquatic habitat) into consideration.
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