

CLIMATES| WORKSHOP 1 | 5TH FEBRUARY 2018 | BUDAPEST

1

Task 1 | GIMP | Learn the basics

• Choose an image on the following website: https://apod.nasa.gov/apod/archivepix.html

• Download the chosen image to your computer

• Launch the GIMP 2 application by clicking on its icon at the desktop

• Try to perform the following modifications to your chosen image:

o Step 1: Change the size of the image then export the modified image

o Step 2: Crop the image then export the modified image

o Step 3: Rotate the image then export the modified image

o Step 4: Flip the image then export the modified image

• In the Toolbox you can find more, very useful tools to perform several

kinds of modifications to any image you choose

• For more tutorials you can visit: https://www.gimp.org/tutorials/

Task 2 | MIT App Inventor 2 | “Flags”

• Here are the components for the Flags app, as shown in the Component Designer:

• Create a variable, which will be a blank list and name it as ‘Color’.

• At the start of the application store the colors of the flags in

TinyDB1. The tag for each flag is the name of the country.

ValueToStore has a three-component list where the 3 colors of

the flags are stored.

• For example, if we click the button of the flag of Estonia, the

values stored in TinyDB1 under the tag ‘Estonia’ will be retrieved

by the Get.Value procedure and the variable called ‘Color’ will be

set to the retrieved value.

o We turn off the visibility of the HorizontalArrangement2 and

then turn on the visibility of the VerticalArrangemet1.

https://apod.nasa.gov/apod/archivepix.html
https://www.gimp.org/tutorials/

CLIMATES| WORKSHOP 1 | 5TH FEBRUARY 2018 | BUDAPEST

2

o The background-color of the HorizontalTopLabel has to be set to the color stored in

the 1st element of the list.

o The background-color of the HorizontalMiddleLabel has to be set to the color stored

in the 2nd element of the list.

o The background-color of the HorizontalBottomLabel has to be set to the color stored

in the 3rd element of the list.

o We do so in every case the flag consists of horizontally arranged stripes by retrieving

the data of the appropriate country.

• For example, if we click the button of the flag of France (Martinique), the values stored in

TinyDB1 under the tag ‘France’ will be retrieved by the Get.Value procedure and the

variable called ‘Color’ will be set to the retrieved value.

o We turn on the visibility of the HorizontalArrangement2 and then turn off the visibility

of the VerticalArrangemet1.

o The background-color of the HorizontalLeftLabel has to be set to the color stored in

the 1st element of the list.

o The background-color of the HorizontalMiddleLabel has to be set to the color stored

in the 2nd element of the list.

o The background-color of the HorizontalRightLabel has to be set to the color stored

in the 3rd element of the list.

o We do so in every case the flag consists of vertically arranged stripes by retrieving

the data of the appropriate country.

• Find out more about TinyDB by clicking on the links below.

o http://www.appinventor.org/assets/pdf/ch22Databases.pdf

o http://appinventor.pevest.com/?p=58

http://www.appinventor.org/assets/pdf/ch22Databases.pdf
http://appinventor.pevest.com/?p=58

CLIMATES| WORKSHOP 1 | 5TH FEBRUARY 2018 | BUDAPEST

3

Task 3 | MIT App Inventor 2 | “Where’s my car”

• The app demonstrates how to communicate with the Android location sensor, how to

record data in the phone's long-term memory (database), and how you can open the

Google Maps app from your app to show directions from one location to another. It makes

use of the following App Inventor components:

o Location Sensor

o TinyDB //to store the data

o ActivityStarter //to open a map

• Here are the components for the Where’s My Car? app, as shown in the Component Designer:

• The ActivityStarter1 component is used to launch the map when the user asks for directions.

Its properties are only partially shown above. Here is how they should be specified:

• Let’s examine the four different event-handlers of the app, starting in the top-left and

working around in counter-clockwise order.

o LocationSensor1.LocationChanged: This event occurs when the phone’s location

sensor first gets a reading, or when the phone is moved to produce a new reading.

Property Value
Action android.intent.action.VIEW

ActivityClass com.google.android.maps.MapsActivity
ActivityPackage com.google.android.apps.maps

CLIMATES| WORKSHOP 1 | 5TH FEBRUARY 2018 | BUDAPEST

4

The event-handler just places the readings – latitude, longitude, and current (street)

address – into the corresponding ’Current’ labels so that they appear on the phone.

The RememberButton is also enabled in this event-handler. Its enabled setting should

be unchecked in the Component Designer because there is nothing for the user to

remember until the sensor gets a reading.

o RememberButton.Click: When the user clicks the RememberButton, the location

sensor’s current readings are put into the ‘remember’ labels and stored to the database

as well. The DirectionsButton is enabled as it now makes sense for the user click on it

to see a map (though it will make more sense once the user changes location).

o DirectionsButton.Click: When the user clicks the DirectionsButton, the event-handler

builds a URL for a map and calls ActivityStarter to launch the Maps application and

load the map. join is used to build the URL to send to the Google Maps application.

The resulting URL consists of the Google Maps domain along with two crucial

parameters, saddr and daddr, which specify the start and destination for the

directions. For this app, the saddr is set to the latitude and longitude of the current

location, and the daddr is set to the latitude and longitude of the location that was

‘remembered’.

o Screen1.Initialize: This event is always triggered when an app opens. To

understand it, you have to envision the user recording the location of the car, then

closing the app, then later re-opening the app. When the app re-opens, the user

expects that the location remembered earlier should appear on the phone. To

facilitate this, the event-handler queries the database (call TinyDB.GetValue). If there

is indeed a remembered address stored in the database – the length of the stored

address is greater than zero – the remembered latitude, longitude, and street address

are placed in the corresponding labels.

• Find out more about Sensors by clicking on the link below.

http://www.appinventor.org/bookChapters/chapter23.pdf

http://www.appinventor.org/bookChapters/chapter23.pdf

