

CLIMATES| WORKSHOP 2 | 6TH FEBRUARY 2018 | BUDAPEST

1

Task 1 | GIMP | “Smiley”

Your task is to create an image looks like this:

• Create a 500x500 pixel image and fill the background with transparency.

• Use the Ellipse Select Tool to make a circular selection and place it in the middle of the image.

• Set the Foreground color to black and click on the option Edit\Stroke Selection. Set line width

to 8 px then click the Stroke button on the left.

• Set light yellow to foreground color and a

darker yellow to the background color.

• Select the Blend Tool, by clicking on , set its Radial Shape and set FG to BG gradient.

Now start selection from the middle of the drawn circle and pull it out of the line. Release

the button. The result should look like this:

• Select an ellipsoidal area (as one of the eyes) and fill it with black.

• Select the Move Tool and choose Selection on the left. Move the selection next to the other

one (this will be the other eye) and fill it with black, as well.

• Dismiss the selection by hit Shift+Ctrl+A.

• The mouth shape will be created by using the Paths Tool.

Follow the steps:

o set painting colour to black

o select paths tool then click on the two

points that will give the start and end points of the

mouth

o pull down the middle of the line to get an arc instead

of the straight line

o click the stroke path button at Tool options. Set line

width to 5 px.

CLIMATES| WORKSHOP 2 | 6TH FEBRUARY 2018 | BUDAPEST

2

• Select an ellipsoidal shape on the top of the head. Select the Blend Tool, set the painting

color to white and the background color to the well-known light yellow from the previous

movements (the easiest tool to do so is the Color Picker Tool). Set its shape to Linear and set

gradient to FG to BG. Fill the selected shape from its top to the bottom, then dismiss the

selection.

• Save your project as Smiley in .xcf and also export the image in .png format.

Task 2 | MIT App Inventor 2 | “Where’s my car?”

• The app demonstrates how to communicate with the Android location sensor, how to

record data in the phone's long-term memory (database), and how you can open the

Google Maps app from your app to show directions from one location to another. It makes

use of the following App Inventor components:

o Location Sensor

o TinyDB //to store the data

o ActivityStarter //to open a map

• Here are the components for the Where’s My Car? app, as shown in the Component Designer:

• The ActivityStarter1 component is used to launch the map when the user asks for directions.

Its properties are only partially shown above. Here is how they should be specified:

• Let’s examine the four different event-handlers of the app, starting in the top-left and

working around in counter-clockwise order.

Property Value
Action android.intent.action.VIEW

ActivityClass com.google.android.maps.MapsActivity
ActivityPackage com.google.android.apps.maps

CLIMATES| WORKSHOP 2 | 6TH FEBRUARY 2018 | BUDAPEST

3

o LocationSensor1.LocationChanged: This event occurs when the phone’s location

sensor first gets a reading, or when the phone is moved to produce a new reading.

The event-handler just places the readings – latitude, longitude, and current (street)

address – into the corresponding ’Current’ labels so that they appear on the phone.

The RememberButton is also enabled in this event-handler. Its enabled setting should

be unchecked in the Component Designer because there is nothing for the user to

remember until the sensor gets a reading.

o RememberButton.Click: When the user clicks the RememberButton, the location

sensor’s current readings are put into the ‘remember’ labels and stored to the database

as well. The DirectionsButton is enabled as it now makes sense for the user click on it

to see a map (though it will make more sense once the user changes location).

o DirectionsButton.Click: When the user clicks the DirectionsButton, the event-handler

builds a URL for a map and calls ActivityStarter to launch the Maps application and

load the map. join is used to build the URL to send to the Google Maps application.

The resulting URL consists of the Google Maps domain along with two crucial

parameters, saddr and daddr, which specify the start and destination for the

directions. For this app, the saddr is set to the latitude and longitude of the current

location, and the daddr is set to the latitude and longitude of the location that was

‘remembered’.

o Screen1.Initialize: This event is always triggered when an app opens. To

understand it, you have to envision the user recording the location of the car, then

closing the app, then later re-opening the app. When the app re-opens, the user

expects that the location remembered earlier should appear on the phone. To

facilitate this, the event-handler queries the database (call TinyDB.GetValue). If there

is indeed a remembered address stored in the database – the length of the stored

address is greater than zero – the remembered latitude, longitude, and street address

are placed in the corresponding labels.

• Find out more about Sensors by clicking on the link below.

http://www.appinventor.org/bookChapters/chapter23.pdf

http://www.appinventor.org/bookChapters/chapter23.pdf

CLIMATES| WORKSHOP 2 | 6TH FEBRUARY 2018 | BUDAPEST

4

Task 3 | MIT App Inventor 2 | “To do list”

• Your task is to try to create the app on your own according to a not so detailed description shown below.

• Here are the components for the To do list app, as shown in the Component Designer:

• Here are the blocks for the To do list app, as shown in the Blocks Viewer:

show the

selected task

show the input

field to add new

task

if there is no task to add, a

popup notification appears

otherwise, the new

task is added to the list

CLIMATES| WORKSHOP 2 | 6TH FEBRUARY 2018 | BUDAPEST

5

o We use procedures in App Inventor to create new blocks that we can use repeatedly

and take up less space than all of the blocks used in the original procedure. If we

are using the same sets of blocks more than once, these blocks are called redundant.

• Find out more about Procedures by clicking on the links below.

o http://appinventor.mit.edu/explore/ai2/support/blocks/procedures.html

o http://www.appinventor.org/Procedures2

add a new task to the list,

then store the list in TinyDB1

delete a task from the list,

then store the list in TinyDB1

get existing tasks, stored

as a list in TinyDB1

close the text input option

keep task

delete task, then notify the

user about the modification

http://appinventor.mit.edu/explore/ai2/support/blocks/procedures.html
http://www.appinventor.org/Procedures2

CLIMATES| WORKSHOP 2 | 6TH FEBRUARY 2018 | BUDAPEST

6

Task 4 | MIT App Inventor 2 | “Memory”

• Your task is to try to create the app on your own according to a not so detailed description shown below.

• Here are the components for the Memory app, as shown in the Component Designer:

• Set the TimerInterval of Clock 1 and Clock2 components to 100.

• Here are the blocks for the Memory app, as shown in the Blocks Viewer:

randomize the

order of the images

create time

variables

show the randomly

chosen image

set the time variables to 0

and set the TimerLabel to the

value of the variables

CLIMATES| WORKSHOP 2 | 6TH FEBRUARY 2018 | BUDAPEST

7

• Find out more about the Clock component by clicking on the links below.

o http://ai2.appinventor.mit.edu/reference/components/sensors.html#Clock3

o https://sites.google.com/site/stevozip/home/AI2/clock

by using Clock2.Timer you can

measure the reaction time

by using Clock1.Timer you can sow

each image for exactly 1 second

if one of the answer buttons is

clicked, the user will be notified if

his/her answer is correct or not

http://ai2.appinventor.mit.edu/reference/components/sensors.html#Clock3
https://sites.google.com/site/stevozip/home/AI2/clock

