Binary code

How to convert decimal numbers to binary numbers:

Dezimal	Binär			
	8	4	2	1
0				0
1				1
2			1	0
3			1	1
4		1	0	0
5		1	0	1
6		1	1	0
7		1	1	1
8	1	0	0	0
9	1	0	0	1
10	1	0	1	0
11	1	0	1	1
12	1	1	0	0
13	1	1	0	1
14	1	1	1	0
15	1	1	1	1

A computer only knows the two digits 0 and 1. All numbers, all letters are therefore represented with these two digits.

The digits 1-6 are on the binary cube, but in the form in which computers can read the digits.

$1=001$	$4=100$
$2=010$	$5=101$
$3=011$	$6=110$

At the beginning the children have a little help in front of them. This help looks like this:

If the children roll 100, then 1 means that the number in the circle remains visible. 0 means I don't see the number and cover it up.

At 100, the number 4 remains visible, the other two numbers are covered.
At 101,4 and 1 remain visible. The second digit is 0 and is therefore covered.

In this way you can not only play well, but also do math in a completely different way. I'll translate a game and send it to you.

