

"Cloud Computing in the European schools"

Project: 2017-1-ES01-KA202-038471

"PAAS activity"

Cloud Temperature - Humidity logger

Tutorial

Project: 2017-1-ES01-KA202-038471

"Cloud Computing in the European schools"

Index

Σκοπός του μαθήματος	3
Απαιτούμενος Χρόνος: 4 διδακτικές ώρες	3
Χώρος εργασίας: Εργαστήριο Η/Υ	3
Για τις ανάγκες των μαθημάτων θα χρειαστούμε:	3
Υλοποίηση	4
Μέρος 1ο	4
Υλοποίηση της κατασκευής με τη βοήθεια breadboard	4
Προετοιμασία του ARDUINO IDE για τον προγραμματισμό του ESP8266	5
Μέρος 2ο	8
Λογικό διάγραμμα του προγράμματος	8
Το πρόγραμμα φαίνεται στο παρακάτω link	8
2. Γνωριμία και Ρυθμίσεις Thingspeak	9

Δραστηριότητα PAAS

Χρήση της πλατφόρμας Thingspeak για την καταγραφή και διαδικτυακή παρουσίασης της θερμοκρασίας και της υγρασίας

Σκοπός του μαθήματος

Σκοπός της ενότητας είναι να χρησιμοποιήσετε την πλατφόρμα thingspeak για την καταγραφή δεδομένων ενός αισθητήρα στο διαδίκτυο με τη μορφή γραφήματος.

Μέρος 1

Για τις ανάγκες της υλοποίησης θα χρησιμοποιήσουμε το μικροελεγκτή ESP8266, και τον αισθητήρα θερμοκρασίας υγρασίας DHT11. Το υπολογιστικό σύστημα παίρνει τιμές της θερμοκρασίας και της υγρασίας και θα στέλνει τα δεδομένα κάθε πέντε λεπτά.

Στο πρώτο μέρος θα συνδέσουμε τα εξαρτήματα στο breadboard και θα προετοιμάσουμε το περιβάλλον προγραμματισμού ARDUINO IDE για την εγγραφή του κώδικα στο ESP8266.

Μέρος 2

Προγραμματισμός του συστήματος και μελέτη της πλατφόρμας Thingspeak. Το σύστημα θα χρησιμοποιήσει της cloud υπηρεσίες της πλατφόρμας Thingspeak για την παρουσίαση και επεξεργασία των δεδομένων.

Απαιτούμενος Χρόνος: 4 διδακτικές ώρες

Χώρος εργασίας: Εργαστήριο Η/Υ

Για τις ανάγκες των μαθημάτων θα χρειαστούμε:

Ηλεκτρονικά Εξαρτήματα:			
Μικροελεγκτής:	ESP8266	х	1
Αισθητήρας Θερμοκρασίας Υγρασίας:	DHT	х	1
Αντιστάσεις:	1 Kohm	х	1
	2.2 Kohm	х	1
Σταθεροποιητής τάσεις 3,3 V ή αντίστ.	LD1117	х	1
Τροφοδοτικό usb 5v ()		х	1
Breadboard		х	1
σειριακός μετατροπέας USB ή ARDUINO	Uno	х	1

Ηλεκτρονικός Υπολογιστής

Εγκατεστημένα προγράμματα: Arduino IDE

"Cloud Computing in the European schools"

Fritzing

Χώρος εργασίας: Εργαστήριο Η/Υ

Υλοποίηση

Υπόθεση : Θέλουμε να κατασκευάσουμε ένα έξυπνο υπολογιστικό σύστημα που να μετράει τη θερμοκρασία και την υγρασία και να καταγράφει τα δεδομένα στο Cloud. Η υλοποίηση θα γίνει με τη χρήση της πλατφόρμας Thingspeak.

Μέρος 1ο

Βήματα

1. Υλοποίηση της κατασκευής με τη βοήθεια breadboard

- Χρόνος υλοποίησης: 1 διδακτική ώρα
- **Απαιτούμενες γνώσεις** : Ηλεκτρονικό Σχέδιο
- Υλικά που θα χρειαστείς:

Μικροελεγκτής:	ESP8266	х	1τεμ
Αισθητήρας Θερμοκρασίας Υγρασίας:	DHT	Х	1τεμ
Αντιστάσεις:	R1=1 Kohm	Х	1τεμ
	R2=2.2 Kohm	Х	1τεμ
Σταθεροποιητής τάσεις 3,3 V ή αντίστ.	LD1117	Х	1τεμ
Button push on		Х	1τεμ
Ακροδέκτες pin header 1x2		Х	3τεμ
Τροφοδοτικό usb 5v ()		Х	1τεμ
Breadboard		Х	1τεμ
σειριακός μετατροπέας USB ή ARDUINO L	Jno	Х	1τεμ

Το παρακάτω σχέδιο απεικονίζει το κύκλωμα του υπολογιστικού συστήματος.

Η καρδιά του κυκλώματος είναι το ολοκληρωμένο U3, ο μικροελεγκτής esp8266-01 (για περισσότερα δες το σύνδεσμο esp8266)

Ο μικροελεγκτής έχει ενσωματωμένο WiFi επομένως μπορεί να συνδέεται με τον κατάλληλο προγραμματισμό στο διαδικτυο.

Τα δεδομένα θερμοκρασίας και υγρασίας συλλέγονται από τον αισθητήρα DHT11 (για περισσότερα δες το σύνδεσμο <u>DHT11</u>) Ενδεικτικά αναφέρουμε ότι:

- Τροφοδοσία (Vcc) : 3-5V
- Μέγιστο ρεύμα (Imax): 2.5mA
- Υγρασία: 20-80%, ακρίβεια 2-5%
- Θερμοκρασία: 0 to 50°C, ακρίβεια ±0.5°C

Τα δεδομένα (data) θερμοκρασίας και υγρασίας βγαίνουν στον ακροδέκτη 2 σε ψηφιακή μορφή και διαβάζονται από τον μικροελεγκτή στον ακροδέκτη 5.

Ο μικροελεγκτής με τον κατάλληλο προγραμματισμό αναλαμβάνει να στείλει τα δεδομένα στην ψηφιακή πλατφόρμα thingspeak, όπως θα δούμε παρακάτω. Αναλυτικά οι συνδέσεις του μικροελεγκτή:

- 1. **GND**, Ground (0 V) **Γείωση**.
- 2. **ΤΧ**, Transmit data bit Στην περίπτωση της εφαρμογής μας χρησιμοποιείται για την αποστολή δεδομένων κατά τον προγραμματισμό.
- 3. GPIO 2, General-purpose input/output No. 2
- 4. **CH_PD**, Chip power-down Συνδέεται με τη γείωση όταν θέλουμε να προγραμματίσουμε τον μικροελεγκτή.
- 5. **GPIO 0**, General-purpose input/output No. 0 Ακροδέκτης εισόδου/εξόδου
- 6. RST, Reset Επανεκκίνηση του μικροελεγκτή συνδέεται με το button 1
- RX, Receive data bit Στην περίπτωση της εφαρμογής μας χρησιμοποιείται για τη λήψη δεδομένων κατά τον προγραμματισμό.
- 8. VCC, Voltage (+3.3 V; can handle up to 3.6 V) Τροφοδοσία 3,3V από το LM1117.

Στη θέση του Arduino μπορούμε να χρησιμοποιήσουμε οποιοδήποτε σειριακό μετατροπέα σε usb όπως αυτούς που δείχνουμε στον παρακάτω σύνδεσμο. <u>https://goo.gl/btLsJw</u>.

Ο ακροδέκτης Rx συνδέεται στο δικτύωμα αντιστάσεων R1, R2 και μετά στο Tx του μετατροπέα USB.

Ο ακροδέκτης Τχ συνδέεται απευθείας στο Rx του μετατροπέα USB.

Προσοχή: Στην περίπτωση που θα συνδέσουμε τον ESP8266 για τον προγραμματισμό του με το Arduino (όπως το παραπάνω σχέδιο) η συνδεσμολογία είναι Rx - RX και Tx - Tx.

2. Προετοιμασία του ARDUINO IDE για τον προγραμματισμό του ESP8266

00

Για τις ανάγκες του προγραμματισμού θα χρησιμοποιήσουμε το αναπτυξιακό πρόγραμμα ανάπτυξης κώδικα του ARDUINO (<u>Arduino IDE</u>).

Στο Arduino IDE για να υποστηριχθεί ο ESP8266 πρέπει να γίνουν οι παρακάτω αλλαγές:

1) Άνοιξε από τα menu την επιλογή Αρχείο → Προτιμήσεις

"Cloud Computing in the European schools"

2) Βάλε την επιλογή <u>https://dl.espressif.com/dl/package_esp32_index.json</u> στη επιλογή: Επιπλέον διαχειριστής πλακετών Urls: ("Additional Board Manager URLs") όπως φαίνεται στην παρακάτω εικόνα . Αφού συμπληρώσεις το κείμενο με το παραπάνω URL πάτησε το κουμπί "εντάξει".

Προτιμήσ	εις			
Ρυθμίσεις	Δίκτυο			
Θέση Ske	tchbook:			
D:\Docum	ments\Arduino			Αναζήτηση
Διορθωτή	ις γλώσσας:	Προεπιλογές συστήματος	🗸 (απαιτεί επανεκκίνηση του	Arduino)
Διορθωτή	ις μενέθους νραμματοσειράς:	12		
K)iuaka A	Nadingsanc:		20)	
Eurodyum	י סוגדססויטבטוןכ. ו סוגדססויטבטוןכ		10)	
Ποοσιδοια				
Ιοοισοπ	οιησεις μεταγλωττιστη:	Kaveva 🗸		
Προβ	ολή αριθμών γραμμής			
Ενερι	γοποίηση αναδίπλωσης κώδικ	٥		
🗹 Επικύ	ίρωση του κώδικα μετά το ανι	έβασμα		
🗌 Χρήσ	η εξωτερικού επεξεργαστή κε	μένου		
Aggre	essively cache compiled core			
Ξ Έλεγ	χος για ενημερώσεις στην εκι	siνηση		
Evnµ	έρωση αρχείου σχεδίου σε νέ	α επέκταση με την αποθήκευση (.ped -> .ino)		
Αποθ	ήκευση κατά την <mark>επι</mark> κύρωση ι	ή το ανέβασμα		
Επιπλέον	URLs διαχειριστή πλακετών:	/dl/package_esp32_index.json, http://arduino.esp8266.com	/stable/package_esp8266com	index.json
Οι περισσ	α οτερες επιλογές μπορεί να τρο	οποποιηθούν απευθείας στο αρχείο		
C:\Users\	siliadakis\AppData\Local\Ardu	ino 15\preferences.txt		
(επεξεργα	ασία μόνο όταν το Arduino δεν	/ τρέχει)		

>nnected***"); //monitor data

3) Άνοιξε από το μενού εργαλεία → την επιλογή "πλακέτα" → "Διαχειριστής πλακετών"

Αυτόματη διαμόρισμαρ	Tria T	
Διάσθωση κωδικοποίησης και επαγαγράστωση		
	Terla Shifta M	
	tri+ Shift+ W	
Ζχεοιογραφος σειριακής C	tri+Shift+L	
WiFi101 Firmware Updater		
Πλακέτα: "Arduino/Genuino Uno"		
Θύρα		
Get Board Info		Πλακέτες Arduino AVR
Προγραμματιστής: "AVRISP mkll"		Arduino Yún
Foduluus Rootloader		Arduino/Genuino Uno
d use "unsigned long" for variables that he	old time	Arduino Duemilanove or Diecimila
ly become too large for an int to store		Arduino Nano
		Arduino/Genuino Mega or Mega 2560
lillis - 0;		Arduino Mega ADK
obooof // interval at which to se	enc cemp (m	Arduino Leonardo
// DHT library initialization		Arduino Leonardo ETH
// WiFi Client start		Arduino/Genuino Micro
		Arduino Esplora
		Arduine Mini
		Arduino Ethernet
200); // Serial initialization		Arduino Eio
		Adduine PT
		Lib-Dad Arduing USP
etwork		LilyPad Arduino OSB
Connecting to ");		LilyPad Arduino
sid);		Arduno Pro or Pro Mini
		Arduino NG or older
		Arduino Robot Control
pann);		Arduino Robot Motor
s() != WL_CONNECTED)		Arduino Gemma
		Adafruit Circuit Playground
		Arduino Yún Mini
t("*"); //monitor data		Arduino Industrial 101
); //monitor data		Linino One
WiFi connected*"); //monitor data		Arduino Uno WiFi
		ESP32 Arduino
		ESP32 Dev Module
		ESP32 Wrover Module

4) Εκεί αναζητάμε το ESP8266 και το εγκαθιστούμε με την επιλογή εγκατάσταση. Το αποτέλεσμα είναι όπως αυτό που φαίνεται στη παρακάτω εικόνα.

Είμαστε έτοιμοι για να προγραμματίσουμε τον ESP8266.

Μέρος 2ο

1. Λογικό διάγραμμα του προγράμματος

Το πρόγραμμα φαίνεται στο παρακάτω link

https://create.arduino.cc/editor/siliadakis/46c44fdc-adf8-480a-9724-cfdc8e058321/preview

Στην αρχικοποίηση το προγραμματος πρέπει να βάλουμε τα παρακάτω στοιχεία.

Όνομα WiFi και κωδικός εισόδου ssid = "XXXXXXXXXXXX"; // Enter your WiFi Network's SSID pass = "XXXXXXXXXXXX;; // Enter your WiFi Network's Password καθώς και το Write API Key από το κανάλι μας. apiKey = "xxxxxxxxxxxxxxxxxx;; // Enter your Write API key from ThingSpeak

2. Γνωριμία και Ρυθμίσεις Thingspeak

- 1. https://docs.google.com/presentation/d/1b4bV6a9nmYt55q5qGrw6kC3kExGNnvWvz Ecw8tZICVs/edit?usp=sharing
- 2. Δημιουργία λογαριασμού.

It is free to sign up for ThingSp time-limited free evaluation. T To start using ThingSpeak you Create MathWorks Acco Email Address Missing required information To access your organization's school or work email. Location United States First Name Last Name Continu thingspeak.com	VATLAB license, use	e your	a fully function ngSpeak or to s Works account	al experience on The end more data, con , or, click cancel and	ingSpeak with limits on certai sider our paid license options I log in using an existing Math DATA A AND AT OTTAI SMART CONNECTED DEVIC	In functionality. for commercial Works account.	Commercial use , academic, hon	ATLAE	PMENT
--	---------------------	--------	--	--	---	---	-----------------------------------	-------	-------

3. Use of Channels , Thingspeak API

Reference

https://www.electronicshub.org/dht11-humidity-sensor-with-esp8266/#A Brief Note on DH T11 Sensor

 \odot