
This article is written by students. It may include omissions and imperfections, which
were identified and reported as minutely as possible by our reviewers in the editorial

notes

The Burrow of the Marmots

Vlad Coroian, Anda Lăzărescu,
Alexandra Croitoriu, Alexandra Rus, Nora Petrut,a
Colegiul Nat, ional “Emil Racovit, ă” (Cluj, România)

Paul Comte, Thierno Bah
Lycée d’Altitude (Briançon, France)

Teacher: Ariana Văcăret,u, Thierry Jayle
Researcher:

Lorand Parajdi, Universitatea “Babes, Bolyai”

June 2019

Subject description

This project describes a solution to one of the Math-en-Jeans research topic and an
algorithm designed to solve the generalization of the problem.

Contents

1. Statement of the problem

2. Results

3. Extension for a general case

4. Defining the notions used

5. Solution to the generalization

6. Approach for the particular case given

7. Implementation details for the algorithm

8. Conclusions and observations

9. Bibliography

MATh.en.JEANS 2018-2019 [Colegiul Nai̧onal ”Emil Racoviţă” Cluj-Napoca]
Page 1

1 Statement of the problem

A group of marmots decides to build a new burrow, in sight of the upcoming winter, but
this year they’ve decided to make it in an optimized way. The problem of these marmots
is that their sleep is very light, this implicating a set of 3 rules so that the structure
doesn’t collapse:

• Starting from the entrance or from the end of a corridor, there can be built only a
maximum of 2 corridors, otherwise the burrow collapses.

• It is inconceivable for a marmot to sleep at a crossroad or in the middle of one
corridor. If it did that, other marmots which live further in the burrow would have
to go over it and this would ruin their hibernation. So marmots only sleep at the
end of a corridor which only leads to an only room.

• Even the simple movement and the noise of their tiny paws generates vibrations
which disturb the group during their sleep (they really do have a light sleep!!!),
and knowing how many times each of the marmots will wake up and get out of the
burrow during the winter, we will make sure that the sum of their movements is as
little as possible.

For example, a marmot which wakes up 6 times and is 4 corridors away from the exit
will have to cover 6 · 4 = 24 corridors, both ways (but for working with lower numbers we
will only consider the “going”). If we lay the marmot at 1 corridor away from the exit
she won’t have to cover more than 6x1=6 corridors.

How can we build a burrow for the following marmot family: M1(6 awakenings), M2(4),
M3(4), M4(1), M5(3)?

2 Results

This research paper contains the solution for a generalization of the problem stated. It
also provides an algorithm designed to find the solution for a given set of marmots.

3 Extension for the general case

The problem presented can be extended to a general case, by trying to construct the bur-
row for a given set of n marmots, with their respective number of awakenings M1,M2, ..,Mn.
The algorithm designed for this generalization can therefore be applied to the particular
case originally stated in the problem.

MATh.en.JEANS 2018-2019 [Colegiul Nat, ional “Emil Racovit, ă” Cluj-Napoca]
Page 2

4 Defining the notions used

4.1 Notations

We will consider that at the end of each corridor of the burrow there is a room. The exit
is also considered a room. Therefore, there are three types of rooms:

• Intersections (used to separate a corridor in two other corridors, further away from
the exit)

• Room of a marmot (placed at the end of a sequence of corridors)

• Exit from the burrow

A full binary tree is a binary tree in which every node other that the leaves has two
children. Hence, we can also consider the burrow of the marmots a full binary tree, where
the leaves are the marmots, which have no sons and the inner nodes are the exit and the
intersections, which all have exactly two sons.

A subtree of a tree T is a tree consisting of a node in T and all of its descendants in T .
In our problem, in particular, the subtree of a node N consists of the nodes representing
rooms of marmots which have to go through N to get to the exit and all the inner-nodes
(intersections) between the marmots’ rooms and N .

We now have n marmots, so the full binary tree has exactly n leaf nodes. In a Full
Binary Tree, the number of leaf nodes is the number of internal nodes plus 1. Therefore,
the full binary tree in the problem stated has exactly 2n−1 nodes, n leaf nodes (marmots)
and n− 1 inner nodes (intersections and exit node).

We will define the total value of a tree T as the sum of the movements of the marmots
in the tree and we will use the notation VT .

We define Leveli = the level of the node which represents the i− th marmot’s room.
We define the cost of a node as following:

(a) Costleaf = the number of awakenings corresponding to the marmot

(b) Costinner−node = the sum of awakenings corresponding to the marmots in the subtree
of that inner-node (Obs: This is also equal to the sum of the costs of the two children
of the inner-node)

We also define the weight of a marmot as

Weighti = Costleafi · Leveli,∀i = 1, n

MATh.en.JEANS 2018-2019 [Colegiul Nat, ional “Emil Racovit, ă” Cluj-Napoca]
Page 3

4.2 Calculating the total value for a tree

This weight represents the distance the marmot has to travel to get to the exit times the
number of awakenings it has. Therefore, the total value for a tree is the sum of all the
weights of the marmots. So this is the sum we try to minimize in our problem.

We will also present an easier way of finding the total value of a tree. This result can
also be written as the sum of the costs of all the inner-nodes present in our binary tree.
This can be proven using induction.

4.3 Proof

P (n) : The value of a tree with n leaves is equal to the sum of the costs of all intersections.
There are two cases for our induction, because the tree is either a leaf or it consists of

two full binary subtrees and a root.
For the first case, we only have one marmot. This marmot can be placed right at the

exit of the burrow, so the total value is 0 (In this case we have no inner-nodes). Then P (1)
is true. Moreover, if we have two marmots, the only suitable structure for the burrow is
the following:

Figure 1: Full Binary Tree with two leaves

Because each marmot has one corridor to exit and they wake up M1 and M2 times,
the total value for this tree is M1 +M2. Then P (2) is also true, because there is only one
inner-node with cost M1 + M2.

We can now assume that P (1), .., P (n) are true and we prove P (n + 1). Let’s assume
we have n + 1 marmots with the number of awakenings M1,M2, ..,Mn+1.

Let T be an arbitrary full binary tree with n + 1 leaves. T consists of a root R and
two subtrees, T1, T2, with roots R1 and R2 (R1 and R2 are the children of R). We use
the following notations:

• n1 and n2 the number of leaves n1, n2 ≥ 1, n1 + n2 = n + 1

MATh.en.JEANS 2018-2019 [Colegiul Nat, ional “Emil Racovit, ă” Cluj-Napoca]
Page 4

• C1 and C2 the costs in R1, R2

• VT1 and VT2 the total values for the two subtrees

Because P (n1) and P (n2) are both true, each marmot from the two subtrees has to
walk one more corridor each time it wakes up. C1 +C2 represents the sum of awakenings
from all the marmots in subtrees T1 and T2, so the total value for tree T is equal to
VT1 + VT2 + (C1 + C2).

Root R has the cost CR = C1 +C2, so the total value should be VT = VT1 + VT2 +CR.
Therefore, we can conclude that P (n + 1) is also true and the induction is over.
We now have that P (n) is true ∀n ∈ N∗ and we have found an easier way to calculate

the total value for a tree.

5 Solution for the generalization

We now want to find a way to construct a tree with minimal total value. We also observe
that if we place a marmot further from the exit, it influences the final answer more.
Therefore, we try to place the marmots with the smallest costs first.

We make the following observation: If we have grouped two marmots together as in
Figure 2, we can consider it a new ”marmot” and insert it in the current set of marmots
with value M1 + M2 (the structure of this ”marmot” does not change, however). This is
true because of the property we proved at 4.3. If at the beginning we had n marmots,
we now only have n − 1 marmots. So if we continue this algorithm for n steps we can
construct a tree, which represents the burrow of the marmots.

Figure 2: Grouping two marmots

We have to decide now how to group the marmots together. We always choose two
marmots (even though the ”marmots” we choose may come from previous groupings).

MATh.en.JEANS 2018-2019 [Colegiul Nat, ional “Emil Racovit, ă” Cluj-Napoca]
Page 5

Moreover, we always try to use the marmots with the smallest values for a group (because
when we group them, we actually place them further from the root).

We can now describe the algorithm we can use to find the smallest sum of movements:

initialization;
answer=0;
while there are at least 2 marmots do

find the marmots with the littlest number of awakenings;
a=smallest value in set;
b=second smallest value in set;
remove marmots a and b from the set of marmots;
insert a new marmot in the set with value a + b;
answer = answer + (a + b);

end
Algorithm 1: Finding the smallest sum of movements

After executing this algorithm, the minimal sum of movements is the value of variable
answer. To construct the burrow we can trace back the groups we have made.

6 Approach for the particular case

We will apply the algorithm described for the case given in the statement of the problem.
Here we have n = 5,M1 = 6,M2 = 4,M3 = 4,M4 = 3,M5 = 1.

1. The first step is to select the two smallest values from the original values, 6, 4, 4,
3, 1. These are 3 and 1. We remove these from the set and insert a new ”marmot”
whose value is 3+1=4.

2. We now have 4 marmots left and the values are 6, 4, 4, 4. Because now we have
more choices for a group of marmots, we will have more possible structures which
have the minimal total value. We now choose marmots with values 4 and 4. We
replace them with a new marmot with value 4+4=8.

3. Now we only have three marmots left, 8, 6, 4. We choose 6 and 4, remove them
from the set and insert a new value equal to 6+4=10.

4. The only marmots left are 10 and 8. We replace them with their sum, 10+8=18.
Here our algorithm stops.

The minimal sum of movements is the sum of the marmots inserted at each step. This
is equal to 4+8+10+18=40. We can obtain this sum, by constructing the trees in Figure
3 and Figure 4. Of course, there are multiple different trees which we can build, but those
are obtained by permutations of some subtrees of the trees in Figure 3 and Figure 4.

MATh.en.JEANS 2018-2019 [Colegiul Nat, ional “Emil Racovit, ă” Cluj-Napoca]
Page 6

Figure 3: Structure 1

Figure 4: Structure 2

7 Implementation details for the algorithm

Here is a C++ implementation of the algorithm designed to find the minimal total value
of a tree. To implement it, we used a multiset, which we used to store the marmots’ value,
including the new marmots inserted and possible duplicates. This algorithm complexity
is O(N · log2N), where N is the number of marmots.

1 #include <f stream>
2 #include <set>
3

4 using namespace std ;
5 i f s t r e a m f i (”marmots . in ”) ;
6 ofstream fo (”marmots . out”) ;
7 const int NMAX=1e6 +5;

MATh.en.JEANS 2018-2019 [Colegiul Nat, ional “Emil Racovit, ă” Cluj-Napoca]
Page 7

8 int n ,M[NMAX] , answer ;
9 mul t i s e t <int> marmots ;

10 int main ()
11 {
12 f i >>n ;
13 for (int i =1; i<=n ; i++)
14 {
15 f i >>M[i] ;
16 marmots . i n s e r t (M[i]) ;
17 }
18 while (n−−>1)
19 {
20 int a=(∗marmots . begin ()) ;
21 marmots . e r a s e (marmots . lower bound (a)) ;
22 int b=(∗marmots . begin ()) ;
23 marmots . e r a s e (marmots . lower bound (b)) ;
24 int new marmot=a+b ;
25 marmots . i n s e r t (new marmot) ;
26 answer+=new marmot ;
27 }
28 fo<<”The minimal va lue o f movements i s : ”<<answer ;
29 f i . c l o s e () ;
30 f o . c l o s e () ;
31 return 0 ;
32 }

The following algorithm describes a possible structure which gives the minimal sum.
In the output −i− represents an intersection, −root− represents the exit from the burrow
and −(x)− represents a marmot with value x. To construct the burrow, we have defined
a recursive function structure, which calls itself until every marmots is printed in the
output file.

1 #include <f stream>
2 #include <set>
3 using namespace std ;
4 i f s t r e a m f i (”marmots . in ”) ;
5 ofstream fo (”marmots . out”) ;
6 const int NMAX=1e6+5,INF=1e9 ;
7 pa i r <int , int> in [NMAX] ;
8 int n ,M[NMAX] , answer ;
9 mul t i s e t <pair<int , int>> marmots ;

10 void s t r u c t u r e (int nr)

MATh.en.JEANS 2018-2019 [Colegiul Nat, ional “Emil Racovit, ă” Cluj-Napoca]
Page 8

11 {
12 i f (in [−nr] . f i r s t <0)
13 {
14 fo<<”{” ;
15 s t r u c t u r e (in [−nr] . f i r s t) ;
16 fo<<”}” ;
17 }
18 else fo<<” (”<<M[in [−nr] . f i r s t]<<”) ” ;
19

20 i f (nr==−n+1) fo<<”−root−” ;
21 else fo<<”−i−” ;
22

23 i f (in [−nr] . second <0)
24 {
25 fo<<”{” ;
26 s t r u c t u r e (in [−nr] . second) ;
27 fo<<”}” ;
28 }
29 else fo<<” (”<<M[in [−nr] . second]<<”) ” ;
30 }
31 int main ()
32 {
33 f i >>n ;
34 for (int i =1; i<=n ; i++)
35 {
36 f i >>M[i] ;
37 marmots . i n s e r t ({M[i] , i }) ;
38 }
39 for (int i =1; i<n ; i++)
40 {
41 pa i r <int , int> a=(∗marmots . begin ()) ;
42 marmots . e r a s e (marmots . lower bound (a)) ;
43 pair<int , int> b=(∗marmots . begin ()) ;
44 marmots . e r a s e (marmots . lower bound (b)) ;
45 int new marmot=a . f i r s t+b . f i r s t ;
46 in [i]={a . second , b . second } ;
47 int index=−i ;
48 marmots . i n s e r t ({new marmot , index }) ;
49 answer+=new marmot ;
50 }
51 fo<<”The minimal va lue o f movements i s : ”<<answer<<”\n” ;

MATh.en.JEANS 2018-2019 [Colegiul Nat, ional “Emil Racovit, ă” Cluj-Napoca]
Page 9

52 s t r u c t u r e (−(n−1)) ;
53 f i . c l o s e () ;
54 f o . c l o s e () ;
55 return 0 ;
56 }

8 Conclusions and observations

There are multiple interesting observations for the way the burrow is constructed. Firstly,
we can prove that the number of possible burrows with n marmots is Cn, the n−th Catalan
number. Therefore, we can also give a recurrence relation between the number of burrows.

Cn =

(
2n

n

)
−
(

2n

n + 1

)
Cn+1 =

n∑
i=1

CiCn−i

We could also try to solve another kind of generalization. In this case, we could change
the rules to construct a burrow. The burrow could take the form of a k − ary tree, so
each corridor could be divided into exactly k other corridors. A similar strategy could
be applied, where instead of choosing the smallest two values, we choose the smallest k
values and replace them with a new ”marmot” which has the number of awakenings equal
to the sum of the marmots chosen. We should also take into account the case where the
number of marmots is not divisible by k and make sure we place the marmots as close as
possible to the exit.

9 Bibliography

1. https://www.geeksforgeeks.org/binary-tree-set-3-types-of-binary-tree/

2. https://en.wikipedia.org/wiki/Binary tree

MATh.en.JEANS 2018-2019 [Colegiul Nat, ional “Emil Racovit, ă” Cluj-Napoca]
Page 10

	Statement of the problem
	Results
	Extension for the general case
	Defining the notions used
	Notations
	Calculating the total value for a tree
	Proof

	Solution for the generalization
	Approach for the particular case
	Implementation details for the algorithm
	Conclusions and observations
	Bibliography

