
THE BURROW OF THE MARMOTS

Vlad COROIAN, Anda LĂZĂRESCU,

Alexandra CROITORIU, Nora PETRUȚA, Alexandra RUS

Colegiul Național “Emil Racoviță” Cluj-Napoca, Romania

The research topic

A group of marmots decides to dig a new burrow for the winter that is

coming, but this year they decided to make it in a more optimized way. Their

problem is that they have a soft sleep (they are light sleepers) that involves 2

rules and another one for the construction not to fall down:

• Starting from the entrance or the extremity of the corridor, we can build no

more than 2 corridors, or else the construction risks to fall down.

• It is inconceivable for a marmot to sleep at a crossroad or in the middle of

the corridor. If so, they should walk above the others who live at a lower

level, which means ruining their hibernation. In this way, the marmots sleep

in the bottom of the corridor, that also represents the only way out of the

construction.

• Even the basic movement of the marmots and the sound of their steps

generate vibrations that disturbs the group from their sleep (they really sleep

soft). So, if we know how many times each marmot wakes up, we will make

sure that the sum of the movements is minimum. For example, a marmot that

wakes up for 6 times and there are 4 corridors it will be 6x4=24 corridors,

but in order to have smaller numbers, we will count only the way forward. If

the marmot is in the exit corridor, it will make only 6x1=6 corridors. How do

we build the burrow of the marmots for the next families: M1(6 wakes),

M2(4), M3(4), M4(1), M5(3)?

Representations

Demonstration for the general case

The algorithm

Proof

EXIT

MARMOT 1 (x)

MARMOT 3 (z)MARMOT 2 (y)

INTERSECTION

• Full bianry tree (each
node is either an
intersection, which has 2
sons, or a leaf, a marmot);
• Each edge represents a
corridor;
• There are n leaves, 2n-1
nodes, n-1 intersections;
• Every leaf is asociated a
cost (which is the number
of awakenings);
• Weight of a node=
(number of awakenings for
a marmot) * (distance from
the exit).

• We associate each internal node (intersection) the sum of the
values in its 2 sons;

• The cost of the whole tree is now the sum of the values in
these intersections. We can prove this by induction.

EXIT

MARMOT 1 (x)

MARMOT 3 (z)MARMOT 2 (y)

INTERSECTION

EXIT

MARMOT 1 (x) NODE (y+z)

• n=1, the cost is 0;
• n=2, one intersection with the value V1+V2; the final cost is V1+V2;

 the statement is true for n=1 and n=2;
• We can now assume that the statement is true for k=1, k=2, …, k=n and
we prove it for n+1.

We consider an arbitrary full binary tree with 2 sons:
Left one: – k marmots;

– S1=total sum of awakenings of the left subtree;
– C1=total cost of the left subtree;

Right one: – n+1-k marmots;
– S2=total sum of awakenings of the left subtree;
– C2=total cost of the right subtree;

 The value in the root will be S1+S2 and the total cost for the tree will be
(C1+C2)+(S1+S2).
 So the statement is true for n+1 too.

Solution of the general case

6 4 4 31

6 44

31

ROOT

The solution is 1*3+3*3+4*2+6*2+4*2=40

• Greedy strategy – obtaining the minimal sum at each step;
• Using marmots with smaller values first;
• n marmots – n leaf nodes;
• Grouping together the 2 smallest values;
• Repeating the process until only one marmot is left, whose value will
actually be the answer to our problem;

1. We use a set to memorize the values we currently have and another
variable to store the answer.

Complexity: O(N^2*logN);
2. We use 2 deques for the marmots we have initially and for the “new
marmots” we insert.

Complexity: O(N*logN).
We can also provide an algorithm for generating the structure, by storing
additional data as we do the steps mentioned before.

