# Vlad COROIAN, Anda LĂZĂRESCU, Alexandra CROITORIU, Nora PETRUȚA, Alexandra RUS Colegiul Național "Emil Racoviță" Cluj-Napoca, Romania 

## The research topic

A group of marmots decides to dig a new burrow for the winter that is coming, but this year they decided to make it in a more optimized way. Their problem is that they have a soft sleep (they are light sleepers) that involves 2 rules and another one for the construction not to fall down:

- Starting from the entrance or the extremity of the corridor, we can build no more than 2 corridors, or else the construction risks to fall down.
- It is inconceivable for a marmot to sleep at a crossroad or in the middle of the corridor. If so, they should walk above the others who live at a lower level, which means ruining their hibernation. In this way, the marmots sleep in the bottom of the corridor, that also represents the only way out of the construction.
- Even the basic movement of the marmots and the sound of their steps generate vibrations that disturbs the group from their sleep (they really sleep soft). So, if we know how many times each marmot wakes up, we will make sure that the sum of the movements is minimum. For example, a marmot that wakes up for 6 times and there are 4 corridors it will be $6 \times 4=24$ corridors, but in order to have smaller numbers, we will count only the way forward. If the marmot is in the exit corridor, it will make only $6 \times 1=6$ corridors. How do we build the burrow of the marmots for the next families: $\mathrm{M}_{1}$ ( 6 wakes), $M_{2}(4), M_{3}(4), M_{4}(1), M_{5}(3)$ ?


## Representations



MARMOT 1 (x) INTERSECTION

MARMOT 2 (y)

MARMOT 3 (z)

- Weight of a node= (number of awakenings for a marmot) * (distance from the exit).


## Demonstration for the general case

- We associate each internal node (intersection) the sum of the values in its $\mathbf{2}$ sons;

MARMOT 1 (x) INTERSECTION
MARMOT 1 (x) NODE ( $\mathrm{y}+\mathrm{z}$ )

MARMOT 2 (y) MARMOT 3 (z)

- The cost of the whole tree is now the sum of the values in these intersections. We can prove this by induction. node is either an intersection, which has 2 sons, or a leaf, a marmot);
- Each edge represents a corridor;
- There are $\mathbf{n}$ leaves, $\mathbf{2 n - 1}$ nodes, $\mathbf{n - 1}$ intersections;
- Every leaf is asociated a cost (which is the number of awakenings);

- $\mathrm{n}=\mathbf{1}$, the cost is 0 ;
- $\mathbf{n}=\mathbf{2}$, one intersection with the value $\mathbf{V 1 + V 2}$; the final cost is $\mathbf{V 1 + V 2 ;}$
$\Rightarrow$ the statement is true for $\mathrm{n}=1$ and $\mathrm{n}=2$;
- We can now assume that the statement is true for $\mathbf{k}=\mathbf{1}, \mathbf{k}=\mathbf{2}, \ldots, \mathbf{k}=\mathbf{n}$ and we prove it for $\mathbf{n + 1}$.

We consider an arbitrary full binary tree with 2 sons: Left one: - k marmots;

- S1=total sum of awakenings of the left subtree;
- C1=total cost of the left subtree;

Right one: - n+1-k marmots;

- S2=total sum of awakenings of the left subtree;
- C2=total cost of the right subtree;
$\Rightarrow$ The value in the root will be $\mathbf{S 1 + S 2}$ and the total cost for the tree will be (C1+C2)+(S1+S2).
$\Rightarrow$ So the statement is true for $\mathbf{n + 1}$ too.


## Solution of the general case



