

Equilibrium

By Daria Şerbănescu and Flavius Budiu Colegiul National "Emil Racovita" (Cluj, Romania)

RESEARCH TOPIC

• Determine the equilibrium positions of an egg (bidimensional) or of a parabola section.

INTRODUCTION

First of all, we took the equation below^{*} to describe an egg. We thought that the egg would have 2 points of equilibrium, symmetrically positioned to the axis of symmetry (in our case, OY).

METHOD

Step 2. Calculating the area of each triangle

• Using Gauss's shoelace formula we can calculate the area of each ΔOP_iP_{i+1} triangle.

$$A_{i} = \frac{1}{2} \left(x_{i} y_{i+1} - y_{i} x_{i+1} \right)$$

Step 3. Generalization of the formula

world_record_egg 🗇 · Follow

To find the centre of gravity (G) we need to calculate the weighted average of all G_i points, also considering the area of the triangle it represents.

$$\begin{aligned} x_{\rm G} &= \frac{\sum_{i=1}^{360} \left(A_i x_{G_i}\right)}{\sum_{i=1}^{360} A_i} \quad \Leftrightarrow x_{\rm G} = \frac{\sum_{i=1}^{360} \left(\frac{1}{2} (x_i y_{i+1} - y_i x_{i+1}) \left(\frac{x_i + x_{i+1}}{3}\right)\right)}{\sum_{i=1}^{360} A_i} \quad \Leftrightarrow x_{\rm G} = \frac{1}{6} \frac{\sum_{i=1}^{360} \left((x_i y_{i+1} - y_i x_{i+1}) (x_i + x_{i+1})\right)}{\sum_{i=1}^{360} A_i} \\ y_{\rm G} &= \frac{\sum_{i=1}^{360} \left(A_i y_{G_i}\right)}{\sum_{i=1}^{360} A_i} \quad \Leftrightarrow x_{\rm G} = \frac{\sum_{i=1}^{360} \left(\frac{1}{2} (x_i y_{i+1} - y_i x_{i+1}) \left(\frac{y_i + y_{i+1}}{3}\right)\right)}{\sum_{i=1}^{360} A_i} \quad \Leftrightarrow y_{\rm G} = \frac{1}{6} \frac{\sum_{i=1}^{360} \left((x_i y_{i+1} - y_i x_{i+1}) (y_i + y_{i+1})\right)}{\sum_{i=1}^{360} A_i} \end{aligned}$$

Calculating the distances $d(G, A_i)$, where $i \in \{1, ..., 360\}$ and knowing that an object is in stable equilibrium when its centre of gravity is the closest to the surface it is standing on³, finding the smallest distance from the centre of mass to the outline of the egg will show us the points of

METHOD

equilibrium.

...

 \sim

PROPRIETIES USED

- - ¹The formula for the coordinates of the centroid of a triangle is:

$$x_{\rm C} = \frac{x_1 + x_2 + x_3}{3}$$
$$y_{\rm C} = \frac{y_1 + y_2 + y_3}{3}$$

- ²In case of a rigid, homogeneous object, the centre of mass will be located at the centroid, together with the centre of gravity.
- ³An object is in stable equilibrium when its centre of gravity is the closest to the surface it is standing on.

- From the centre of the XOY system, we draw rays at each 1°, starting with OX. Intersecting these rays with the "outline of the egg" we obtain 360 points notated with $P_i(x_i, y_i) \in \{1, 2, ..., 360\}.$
- Using these points we divide our surface in triangles with one vertex at the origin O, ΔOP_iP_{i+1} .

Step 1. Finding the centroid of each triangle

• Knowing the formula for the coordinates of the centroid¹, we apply it for each of our triangle, obtaining:

 $x_{C_i} = \frac{x_i + x_{i+1}}{3}; \ y_{C_i} = \frac{y_i + y_{i+1}}{3}$

• Finding the centroid we also find the centre of gravity² ($G_i = C_i$).

53,405,788 likes

- We consider the egg as being solid and homogeneous.
- * Knowing that the equation $x^2 + y^2 = r^2$ describes a circle of radius r, to obtain an ellipse we divide y^2 by e_c , the eccentricity of an ellipse, where $e_c = 9/4$. To develop the shape of an egg we have to multiply x^2 with t(y), where t(y)=1+py, $-0.2 \le p \le 0.2$ and p describes the constant which controls the pointiness of the oval.

CONCLUSIONS

- To determine the equilibrium positions of an egg we divide the egg into triangles of whom we find the centre of gravity and area. Using these, we calculate G's coordinates.
- The smallest distance $d(G, P_i)$, $i \in \{1, \dots, 360\}$ will correspond to two points on the egg situated symmetrically across the OY axis, the points of equilibrium.