RESEARCH TOPIC

－Determine the equilibrium positions of an egg（bidimensional ）or of a parabola section．

INTRODUCTION

－First of all，we took the equation below＊to describe an egg．We thought that the egg would have 2 points of equilibrium， symmetrically positioned to the axis of symmetry（in our case，OY）．

$$
\text { (4) } \frac{y^{2}}{e_{c}}+x^{2} \cdot t(y)=r^{2}
$$

$$
t(y)=1+p y
$$

METHOD

－From the centre of the XOY system，we draw rays at each 1° ，starting with OX．
Intersecting these rays with the＂outline of the egg＂we obtain 360 points notated with $P_{i}\left(x_{\mathrm{i}}, y_{\mathrm{i}}\right) \mathrm{i} \in\{1,2, \ldots, 360\}$ ．
－Using these points we divide our surface in triangles with one vertex at the origin O ， $\Delta O P_{i} P_{i+1}$ ．

Step 1．Finding the centroid of each triangle
－Knowing the formula for the coordinates of the centroid ${ }^{1}$ ，we apply it for each of our triangle，obtaining：

$$
x_{C_{\mathrm{i}}}=\frac{x_{\mathrm{i}}+x_{i+1}}{3} ; y_{C_{\mathrm{i}}}=\frac{y_{\mathrm{i}}+y_{i+1}}{3}
$$

－Finding the centroid we also find the centre of gravity ${ }^{2}\left(G_{\mathrm{i}}=C_{\mathrm{i}}\right)$ ．

METHOD

Step 2．Calculating the area of each triangle

－Using Gauss＇s shoelace formula we can calculate the area of each $\Delta O P_{i} P_{i+1}$ triangle．

$$
A_{\mathrm{i}}=\frac{1}{2}\left(x_{i} y_{i+1}-y_{i} x_{i+1}\right)
$$

Step 3．Generalization of the formula
To find the centre of gravity (G) we need to calculate the weighted average of all G_{i} points，also considering the area of the triangle it represents．

$$
\begin{array}{cc}
x_{\mathrm{G}}=\frac{\sum_{i=1}^{360}\left(A_{i} x_{G_{\mathrm{i}}}\right)}{\sum_{i=1}^{360} A_{i}} \Leftrightarrow x_{\mathrm{G}}=\frac{\sum_{i=1}^{360}\left(\frac{1}{2}\left(x_{i} y_{i+1}-y_{i} x_{i+1}\right)\left(\frac{x_{\mathrm{i}}+x_{i+1}}{3}\right)\right)}{\sum_{i=1}^{360} A_{i}} & \Leftrightarrow x_{\mathrm{G}}=\frac{1}{6} \frac{\sum_{i=1}^{360}\left(\left(x_{i} y_{i+1}-y_{i} x_{i+1}\right)\left(x_{\mathrm{i}}+x_{i+1}\right)\right)}{\sum_{i=1}^{360} A_{i}} \\
y_{\mathrm{G}}=\frac{\sum_{i=1}^{360}\left(A_{i} y_{G_{\mathrm{i}}}\right)}{\sum_{i=1}^{360} A_{i}} \Leftrightarrow x_{\mathrm{G}}=\frac{\sum_{i=1}^{360}\left(\frac{1}{2}\left(x_{i} y_{i+1}-y_{i} x_{i+1}\right)\left(\frac{y_{i+1}}{3}\right)\right)}{\sum_{i=1}^{360} A_{i}} & \Leftrightarrow y_{\mathrm{G}}=\frac{1}{6} \frac{\sum_{i=1}^{360}\left(\left(x_{i} y_{i+1}-y_{i} x_{i+1}\right)\left(y_{\mathrm{i}}+y_{i+1}\right)\right)}{\sum_{i=1}^{360} A_{i}}
\end{array}
$$

－Calculating the distances $\mathrm{d}\left(\mathrm{G}, A_{i}\right)$ ，where $\mathrm{i} \in\{1, \ldots 360\}$ and knowing that an object is in stable equilibrium when its centre of gravity is the closest to the surface it is standing on ${ }^{3}$ ，finding the smallest distance from the centre of mass to the outline of the egg will show us the points of equilibrium．
world＿record＿egg •Follow

53，405，788 likes

NOTES

－We consider the egg as being solid and homogeneous．
－＊Knowing that the equation $x^{2}+y^{2}=r^{2}$ describes a circle of radius r ，to obtain an ellipse we divide y^{2} by e_{c} ，the eccentricity of an ellipse，where $e_{c}=9 / 4$ ．To develop the shape of an egg we have to multiply x^{2} with $\mathrm{t}(\mathrm{y})$ ， where $t(y)=1+p y,-0.2 \leq p \leq 0.2$ and p describes the constant which controls the pointiness of the oval．

PROPRIETIES USED

－${ }^{1}$ The formula for the coordinates of the centroid of a triangle is：

$$
\begin{aligned}
& x_{\mathrm{C}}=\frac{x_{1}+x_{2}+x_{3}}{3} \\
& y_{\mathrm{C}}=\frac{y_{1}+y_{2}+y_{3}}{3}
\end{aligned}
$$

－${ }^{2}$ In case of a rigid，homogeneous object，the centre of mass will be located at the centroid， together with the centre of gravity．
－${ }^{3}$ An object is in stable equilibrium when its centre of gravity is the closest to the surface it is standing on．

CONCLUSIONS

－To determine the equilibrium positions of an egg we divide the egg into triangles of whom we find the centre of gravity and area．Using these，we calculate G＇s coordinates．
－The smallest distance $\mathrm{d}\left(\mathrm{G}, P_{i}\right), \mathrm{i} \in\{1, \ldots 360\}$ will correspond to two points on the egg situated symmetrically across the OY axis，the points of equilibrium．

