Untwisting braids

Alisa Maier ${ }^{1}$, Dragos Crisan ${ }^{1}$
${ }^{1}$ Colegiul National "Emil Racovita",
Cluj-Napoca

Introduction

A braid consists of n vertically arranged yarns that intermingle in various crossings and are tied up and down. If we can remove all the crossings of a braid without cutting wire or moving their ends, we say that the braid is trivial. Opposite, we see two braids with three yarns, on the left a trivial one and on the right a non-trivial one:
a) Are there non-trivial braids such that if we remove any of its strands (for example if we cut it) then the braid becomes trivial ?
b) Is it possible to stick a braid under another braid such that the braid obtained is trivial?

Axioms

Notations

Borromean braid

$(1,2)$
$(3,1)$
$(1,2)$
$(2,3)$

Tricolorability

The group

χ^{-1}
$\mathrm{G}=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}\right\rangle$
$\left|x_{i}\right|=\infty$
$\left\langle x_{i}\right\rangle \cap\left\langle x_{j}\right\rangle=\{e\}$, for $\mathfrak{i} \neq \boldsymbol{j}$
Let x and y be generators. Then:

Axiom I

There exists x^{-1}.

Axiom II

$x y x=y x y$, if x and y are adjacent.

Axiom III

$x y=y x$, if x and y are not adjacent.

$\left(x^{-1} y\right)^{3} \neq e$

