

Totally Maths
We proudly present the Maths work in our Erasmus + Project
Students taught Maths to peer students and then worked on the process of the creation of the lessons

Math Class

Dries, Tibo, Gust and Kyara

Logo contest!

3 Ranked (2) Choice 3 3 Voting

First exercise + dimensions and elements

Diagonal Matrix

Symmetrical Matrix

Row matrix

Column Matrix

Zero matrix

Exercise:

1) What's the dimension?
2) Give the element b23,b44,b61
3) Which element has the longest route?
4) What is special about the form of
 the matrice?
\(B=\left[\begin{array}{cccccc}A \& D \& G \& L \& M \& S

0 \& 53 \& 65 \& 39 \& 25 \& 26

53 \& 0 \& 30 \& 14 \& 28 \& 27

65 \& 30 \& 0 \& 26 \& 58 \& 39

39 \& 14 \& 26 \& 0 \& 42 \& 13

25 \& 28 \& 58 \& 42 \& 0 \& 34

26 \& 27 \& 39 \& 13 \& 34 \& 0\end{array}\right]\)| A |
| :---: |
| D |
| G |
| L |
| M |

Adding up matrices

$\left.A=\left[\begin{array}{cc}\text { an. mtk. } \\ 42 & 29 \\ 19 & 13 \\ 34 & 22\end{array}\right] \begin{array}{l}\text { Akash } \\ \text { G0 } \\ 50\end{array}\right] \begin{aligned} & \text { Gitte } \\ & \text { Wolf }\end{aligned}$

an. mtk.

$\begin{array}{ll}60 & 41\end{array}$ Akash
 2823 Gitte
 69 29 Wolf
 7550 max.

Solution

Exercises

$$
A-B+C \text { if }
$$

Determine X, Y, Z and T

$$
A=\left[\begin{array}{cc}
a & b \\
-a & 0
\end{array}\right], B=\left[\begin{array}{cc}
-a & 2 b \\
0 & a
\end{array}\right] \text { en } C=\left[\begin{array}{cc}
2 a & -2 b \\
a & 0
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
x & 4 \\
2 t & y
\end{array}\right]-\left[\begin{array}{cc}
y & z \\
4 t & -x
\end{array}\right]=\left[\begin{array}{cc}
3 & 0 \\
12 & -3
\end{array}\right] .
$$

Multiply with

 MatricesThe school is paying for the teachers who get to school by bike. They calculate the bicycle compensation a month. They get $€ 0,15$ for each kilometres.

To calculate the bicycle compensation, we need to multiply every number in the matrix A with 0,15 .
For example:
$240 \times 0,15=€ 36$
march April

maart april
\(B=0,15 A=\left[\begin{array}{cc}36,00 \& 21,60

15,75 \& 9,75

43,20 \& 24,00\end{array}\right]\)| Ikr 1 |
| :--- |
| Ikr 2 |
| Ikr 3 |

Theory: multiplying matrices

1) To solve the matrix equation with X the unknown matrix with dimension 2×2 we do this:

Exercice 4

Thank you for your your attention!

What is an Equation?

In mathematics, the equality between two algebraic expressions is called equation, which will be called members of the equation. In the equations, they will appear related through mathematical operations, numbers and letters
 (unknowns).

Don't confuse it with a polynomial that they have no equality

- First degree equation.
$3 x+2=x+4$
$3 x-x=4-2$
$2 x=2$
$x=1$
- A second degree equation.
$x^{2}+3 x+2=0$

PUT SOME ORDER

Now It's your turn to order the equations

Formula

This is the formula you have to know, otherwise you won't be able to do any of them

We'll call the first known number 'a', the second one 'b' and the third one 'c'

$$
\begin{gathered}
\text { For example: } x^{2}+5 x+6=0 \\
a b b \quad c
\end{gathered}
$$

Here is a video that could help you:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

Complete

 Second DegreeEquations

$x^{2}+3 x+2=0$	
x	$=\frac{-b \pm \sqrt{b^{2}-4 \cdot a \cdot c}}{2 \cdot a}=$
$=$	$\frac{-3 \pm \sqrt{3^{2}-4 \cdot 1 \cdot 2}}{2 \cdot 1}=$
$=$	$\frac{-3 \pm \sqrt{9-8}}{2}=$
$=$	$\frac{-3 \pm \sqrt{1}}{2}=$

$=\frac{-3 \pm 1}{2}=\left\{\begin{array}{l}\frac{-3+1}{2}=-1 \\ \frac{-3-1}{2}=-2\end{array}\right.$

It is complete because we have a, b and c . To solve it we have to use the formula, and as we know where each number goes, we place it and solve it.

Equations without solution.

In this part, using the formula you'll see that the equation it doesn't have solution.

There is no solution if we have the sign "-" in the squared root.
@(OO
se emaze

double

In some cases the solution is double.
solution
this happens when the last step is + - 0

$$
x=\frac{-4 \pm \sqrt{16-16}}{2}=\frac{-4 \pm \sqrt{0}}{2}=\frac{-4 \pm 0}{2}
$$

Let's see it in the example

$$
\begin{aligned}
& \text { THE SPANISH } \\
& \text { TEAAM } \\
& \text { PRESENTS: } \\
& \text { THE MAKING OFOUR } \\
& \text { MATH CLASS }
\end{aligned}
$$

Choosing the subject:

Dividing the tasks:

Working on the presentation:

Practising the class:

Practising with public:

Correcting mistakes:

Doing the exposition in Berkenboom to the regular students:

To sum up, it was a hard work that involved all of us
and we're happy with the results and we enjoyed the experience.

Graphing Functions

First Degree Functions

function is a function of a line.

First
Degree Functions/ Linear Functions

It can be written in the form $f(x)=a x+b$

When graphed it is a straight line

The value of b is the point where the function crosses the y-axis (also known as the y-intercept)

When graphed...

The value of a is the rate of change of the function (the slope of the line)

A linear function, in the form $f(x)=a x+b$ is the same as the equation of a line $y=m x+c$
$m=$ rate of change (slope of the line)

$$
y=m x+c
$$

$c=$ initial value (y-intercept)

Linear Functions on Geogebra

Game Time

Quadratic functions

A quadratic function, or second degree function is a function that can be described by an equation of the form $f(x)=a x^{2}+b x+c$ where $a \neq 0$.

quadratic function?
 What is a

In a quadratic function, the greatest power of the variable is 2 . The graph of a quadratic function is a parabola.

Parabola

$$
\begin{array}{cr}
\text { Parabola } & y=a x^{2}+b x+c \\
a>0 & a<0
\end{array}
$$

opens upward

opens downward

What are the roots of a quadratic function?

- The roots of the function is where graph cuts the x axis.

Quadratic Functions on GeoGebra

Game Time

We're going to play a game of Kahoot

Kahoot!!

Introduction

In mathematics the Hungarian algorithm is a combinatorial optimization method that solves the assignment problem in polynomial time.

Matrix

To use this algorithm we must use matrices.
What is a matrix?
It's a rectangular array of numbers, symbols, or expressions, arranged in rows and columns.

Example

You are the director of a company the sellers are
located respectively in the following cities:
-Austim
-Boston
Chicago
You want your sellers to fly to three other cities:
Denver
-Edmonton
-Fargo

From / to	Denver	Edmonton	Forgo
Austin	250	400	350
Boston	400	600	350
Chicago	200	400	250

Example

-Where you need to send your agents so that the
total cost of tickets is minimal?
We introduce a matrix called the cost matrix $\quad\left(\begin{array}{lll}250 & 400 & 350 \\ 400 & 600 & 350 \\ 200 & 400 & 250\end{array}\right)$
-A possible choice could be $250+600+250=1100$
Or maybe $250+400+350=1000$, which is even better

Example

-After trying them all, you will find that the combination with the least cost is $400+350+200=950$

Now let's try it with the
Hungarian algorithm!

Example

-After trying them all, you will find that the combination with the least cost is $400+350+200=950$

Now let's try it with the Hungarian algorithm!

Theorem

- If a number is added to or subtracted from all the entries of each row on column of a cost matrix, then on optimal assignment for the result in cost matrix as also an optimal assignment for the oriental cost matrix

Step 1

-All entries are positive or zero

Step 2

$\left.\begin{array}{l}\begin{array}{l}\text {-From each column, we find the minimum and } \\ \text { subtract if from all entries on that column } \\ \text {-Each row and each column has at least one zero }\end{array} \\ \hline 0\end{array}\right)\left(\begin{array}{lll}0 & 150 & 100 \\ 50 & 250 & 0 \\ 0 & 200 & 50\end{array}\right)$

Step 3

Step 4

-A test for optimality:
-If the number of lines just drawn is n (number of rows of the cost matrix); we are done. If the number of lines" < n, we go to step 5 .

The first case is for shorter exercises

Step 5 (only if necessary)

-We find the smallest entry which is not covered by any of the lines. Then subtract it from each entry which is not covered by the lines and add it to each entry which is covered by a vertical and horizontal line. Now we can go back to step 3 .

Maximization problem

-If we have, instead of a minimization problem, a maximization problem, multiply the matrix C by -1 and proceed as above. If C is not a square matrix (there are more tasks than workers or conversely), we have to augment C into a square matrix by adding zero rows or columns.

Why the algorithm?

The hand by hand checking method works well only when we have small problems, in fact how n grows, it increases the attempts, because there are n ! ways of assigning n resources to n tasks.
-Blue $=\mathrm{n}$
-Green $=\mathrm{n}^{\wedge} 2$
-Red = enn
Yellow = n!

What's the $n!$?

$n!=n^{\star}(n-1)^{\star} \ldots . .{ }^{\star} 1$

-For example:
3! $=3 * 2^{\star} 1=6$

The Masterminds

Buica Antonio, Levav Maya, Lizzadro Luca, Longo Tommaso, Ometto Vittorio,Pasqualin Davide, Pinarolli Leonardo, Rubinelli Johannes

Did you understand?

Who was Harold W.Khun?

Where and when was Harold born?

What is a matrix?

Why the Hungarian Algorithm is called "Hungarian"?

Choose the correct algorithm definition

What is the algorithm for?

8 guys have to make a Carbonara. So they
went to the supermarket to buy 3 ingredients.
They must find the less expensive

How did we work on the project?

Topic 4

Topic 1

How did we start?

We started our work by looking for an original topic that could also involve those who were not skill in mathematics

The idea

The idea who was recommended by our math teacher. At the beginning of the year we were without the teacher and we didn't know how to start the

work.

How did we split the work?

To work on the project we organize ourselves in two meetings a week where for an hour the whole class worked on various steps of the presentation

Process

1) We started by focusing on

Harold Khun's life
2) We studied the algorithm and prepared some exercises about it 3) We prepared the presentation: -powerpoint
-prezi
-kahoot

Presentation

Trigonometry

Who are we?

- students from Belgium
- 16/17 years old

BE UM

BRUSSELS

- capital city
- amazing and beautiful by night
- every year flower market in Brussels' big market

ANTWERP

- the port of Antwerp
- Sportpaleis/Lotto Arena
- 'De Meir'

GENT

- Gravensteen
- Graslei/Korenlei
- Gentse Feesten

FAMOUS BELGIAN FOOD

- Fries
- (Brussels and Liège) waffles
- Chocolate and especially pralines
- Carbonade flamande
- Cuberdon
- Vol au vent

THE BELGIAN COAST

- It's an attractive place
- A lot of people have a second house or apartment here
- It's the holiday place in Belgium

BELGIAN INVENTIONS

- Saxophone
- internet, Robert Cailliau was from Belgium
- Candy
- Praline
- Deodorant

FAMOUS BELGIAN PEOPLE

- Angèle
- Stromae
- Romelu Lukaku
- Kevin De Bruyne
- Eden Hazard
- Thibaut Courtois
- Wout Van Aert
- Max Verstappen (his mother)
- Kim Clijsters
- Nafi Thiam
- Nina Derwael

Some mathematical terms in English

Teorema de pitágoras	Pythagorean theorem
distancia	distance
ángulo	angle
triángulo rectángulo	right-angled triangle
suma de ángulos	angle sum
proporción	ratio

Why do we need trigonometry?

Trigonometry

- to obtain unknown angles/ distances

Pythagorean theorem

- to obtain unknown distances

What do we need?

- right-angled triangle
- opposite side (= lado opuesto)
- hypotenuse (= hypotenusa)
- adjacent side (= lado adyacente)
- 2 known values
- 2 distances

- 1 distance and 1 angle

The basics

Pythagorean theorem: $a^{2}+b^{2}=c^{2}$

Sine $\boldsymbol{\alpha}=$ opposite side / hypotenuse (SOH)
Cosine $\boldsymbol{\alpha}=$ adjacent side / hypotenuse (CAH)
Tangent $\alpha=$ opposite side / adjacent side (TOA)

Now it's your turn...

- a right-angled triangle

What do we know?
opposite side= 10 cm
adjacent side= 15 cm

$$
\begin{aligned}
& \tan ^{-1}(\mathrm{O} / \mathrm{A})=\tan ^{-1}(10 / 15) \\
& \alpha=33,7^{\circ}
\end{aligned}
$$

Now it's your turn...

- a right-angled triangle

What do we know?
opposite side $=8 \mathrm{~cm}$
$\alpha=50^{\circ}$
$\tan \alpha=\mathrm{O} / \mathrm{A}$
=>
$A \bar{A}=8 / \tan n^{2}\left(50^{\circ}\right)$

$A=6,7 \mathrm{~cm}$

Values to remember

α	0°	30°	45°	60°	90°
sine	0	$1 / 2$	$\sqrt{ } 2 / 2$	$\sqrt{3} / 2$	1
cosine	1	$\sqrt{ } 3 / 2$	$\sqrt{ } 2 / 2$	$1 / 2$	0
tangent	$?$	$?$	$?$	$?$	$?$

What is $\tan (0)$?

```
=> tan\alpha=\operatorname{sin}\alpha/\operatorname{cos}\alpha
=> tan 0}\mp@subsup{0}{}{\circ}=\operatorname{sin}\mp@subsup{0}{}{\circ}/\operatorname{cos
0
=> tan 0}
=> tan }\mp@subsup{0}{}{\circ}=
```

α	0°
sine	0
cosine	1

What is $\tan (30)$?

$=>\tan \alpha=\sin \alpha / \cos \alpha$
$\Rightarrow \tan 30^{\circ}=\sin 30^{\circ} / \cos 30^{\circ}$
$=>\tan 30^{\circ}=(1 / 2) /(\sqrt{ } 3 / 2)$
$=(1 / 2) \cdot(2 / \sqrt{ } 3)$
$=>\tan 30^{\circ}=1 / \sqrt{ } 3$

α	0°
sine	$1 / 2$
cosine	$\sqrt{ } 3 / 2$

What is $\tan (45)$?

$=>\tan \alpha=\sin \alpha / \cos \alpha$
$=>\tan 45^{\circ}=\sin 45^{\circ} / \cos 45^{\circ}$
$=>\tan 45^{\circ}=(\sqrt{ } 2 / 2) /(\sqrt{ } 2 / 2)$
$=>\tan 45^{\circ}=1$

α	45°
sine	$\sqrt{ } 2 / 2$
cosine	$\sqrt{ } 2 / 2$

What is $\tan (60)$?

$=>\tan \alpha=\sin \alpha / \cos \alpha$
$=>\tan 60^{\circ}=\sin 60^{\circ} / \cos 60^{\circ}$
$=>\tan 60^{\circ}=(\sqrt{ } 3 / 2) /(1 / 2)$
$=(\sqrt{ } 3 / 2) .(2)$

α	60°
sine	$\sqrt{ } 3 / 2$
cosine	$1 / 2$

$\Rightarrow \tan 60^{\circ}=\sqrt{ } 3$

What is $\tan (90)$?

$=>\tan \alpha=\sin \alpha / \cos \alpha$
$\Rightarrow \tan 90^{\circ}=\sin 90^{\circ} / \cos 90^{\circ}$
$=>\tan 90^{\circ}=1 / 0$
$=>\tan 90^{\circ}=/$

α	90°
sine	1
cosine	0

Thank you for your attention!

the progress -

The game

- Preparing a game
- Too complicated for students
- We scratched the idea

All are work for nothing

- Prepared our PowerPoint and text
- Wrong subject
- Teacher's fault

New lesson

We were ready to go

Lesson in Marbella

Dome

what is an icosahedron?

AN ICOSAHEDRON IS A REGULAR SOLID WITH 20 FACES (EQUILATERAL TRIANGLES)

EACH VERTEX IS LOGATED

 ON THE SURFACE OF A SPHERE

It depends of how many vertex we have, the domo will seem more or less as as a sphere

A DOME IS TO GET MORE POINTS OF THE SPHERE FROM AN ICOSAHEDRON

HOW?

how is it calculated?

Step 1/3

ASSEMBLY DIAGRAM

The type B bar will have: $8=0,519 \times 10,52$
The type C bar will have : $C=0,556 \times 10,52=5,85 \mathrm{~m}$

OUR MATHS LESSON

Spanish team

BUIIDING THE FIRST PIEEES

FIWISHINGG THE DOME

FILHILY WF SHOW OUR DOWE

AND THE PRETIIEST PHOTO

GEOMEIRY

BY
EUREKA SECONDARY, IRELAND.

WHO ARE WE?

EMMA

ARWYN
RACHAEL

CIARA
LAUREN

SOPHIE

MADELEINE

REBECCA
EIMEAR

INTRODUCTION

HOW DO WE RECOGNISE SIMILAR TRIANGLES?

SO.... WHAT ARE SIMILAR TRIANGLES?

IN SIMILAR OR EQUIANGUALR TRIANGLES, ALL THREE ANGLES IN ONE TRIANGLE HAVE THE SAME MEASURE AS THE CORRESPONDING THREE ANGLES IN THE OTHER TRIANGLE.

EXAMPLE OF A SIMILLAR TRIANGLE

LOOK AT THE CIRCLED DIGITS AND TRY AND SEE IF YOU NOTICE ANY CONNECTION BETWEEN THEM?

12

EXAMPLE 1

EXAMPLE 2

EXAMPLE 3

THE RATIO OF THE SIDES

$\frac{|A B|}{|D E|}=\frac{|A C|}{|D F|}=\frac{|B C|}{|E F|}$ or $\frac{|D E|}{|A B|}=\frac{|D F|}{|A C|}=\frac{|E F|}{|B C|}$

EXAMPLE 1

EXAMPLE 2

(b)

ANGLES IN SIMILAR TRIANGLES

Alternate angles

Vertically opposite

Angle D is alternate
to angle E

How far away is the lighthouse from \mathbf{A} ?

(not to scale)

REAL LIFE EXAMPLES

KAHOOT

Kahoot!

SUM UP

WHAT ARE SIMILAR TRIANGLES?

HOW DO WE RECOGNISE SIMILAR TRIANGLES?

Class plan

Similar triangles

1. Introduction to us - name, age etc.
2. Triangle game - students are given triangles to match with, the only instruction is to match the triangles, our aim is to see if students can discover similar triangles
3. Introduction into similar triangles

- What are similar triangles? We are going to use the triangles from the game to explain what similar triangles are
- And how do we recognize these similar triangles? All three angles are equal in triangles, but the sides are in proportion. They are not the same length but the match up.

4. Explaining triangles

- In similar or equiangular triangles, all three angles in one triangle have the same measure as the corresponding three angles in the other triangle.

5. The scale ratio of triangles

- An example of finding the ratio
- Three examples for the students to work through themselves

6. The ratio of the sides

- Showing examples on the power point

> - Worksheet for students to complete
7. Showing real life examples of similar triangles - Looking at a lighthouse and ship example on the power point
8. Real life problems - (handouts)- 3 questions regarding similar triangles and one in relation to ratio of the sides
9. Kahoot
10. Answering questions

How did we prepare our class?

Difficulties

The first problem we ran into was that a lot of people quit the project at the last minute. Because of this we had to find new students who were able to participate.

Preparation

When we found those new students we only had one week left to organize the whole project. Luckily our teacher Mr Steven helped us a lot in the preparation. To anticipate the possible problems we could encounter we already gave the lesson to a Belgian class at our own school. Thanks to this we were able to optimize our class and make sure all the students understood what we were telling them.

The lesson itself

The lesson itself went well except for a few problems. The students weren't really participating in the beginning of the lesson so we started picking out random people and this helped a lot. The students learned something new but it wasn't too complicated for them.

The Kahoot that we had prepared was online, so we could do it the way we prepared him, because phones aren't allowed in the school. Because of this, we used colored paper. In this way, it was a bit difficult to see who the winner was, but now we could ask them better why they thought something was right or wrong.

Examples

To explain the constant function we used the example of a wine cellar which always has to have the same temperature. Another example we gave was with a phone company who always charges the same amount of money every month.

To explain the linear function we used the example of a car driving. The car is driving and then encounters a traffic light. It reaches zero speed and then when the traffic light goes green again he speeds up. He leaves again.

To explain the exponential function we used the example where you have a cake of 10 pieces, when you are on your own, you have the 10 pieces for yourself. When there are 2 people, there are 5 pieces of the cake and when you are with 10 people, everyone has 1 piece. Another example we used was to build a house. When you're with not so many people, it will take a long time to build the house. When you are with a normal number of people, it will take a normal time to build the house and when you are with many people to build the house, the house will be built in a short time.

BE G UM

BRUSSELS

- capital city
- amazing and beautiful by night
- every year flower market in Brussels' big market
- royal family -> King Fillip

ANTWERP

- the port of Antwerp
- Sportpaleis/Lotto Arena
- 'De Meir'

GENT

- Gravensteen
- Graslei/Korenlei
- Gentse Feesten

FAMOUS BELGIAN FOOD

- Fries
- (Brussels and Liège) waffles
- Chocolate and especially pralines
- Carbonade flamande / stoofvlees
- Cuberdon
- Vol au vent
- Beer

THE BELGIAN COAST

- It's an attractive place
- A lot of people have a second house or apartment here
- It's the holiday place in Belgium

BELGIAN INVENTIONS

- Saxophone by Adolphe Sax
- internet, Robert Cailliau was from Belgium
- Candy
- Chocolate
- Deo

FAMOUS BELGIAN PEOPLE

- Angèle
- Stromae
- Romelu Lukaku
- Kevin De Bruyne
- Eden Hazard
- Thibaut Courtois
- Wout Van Aert
- Nafi Thiam
- Nina Derwael

this was

Functions

BY BELGIUM

Constant functions ($\mathrm{Y}=\mathrm{A}$)

Linear functions ($\mathrm{X}=\mathrm{Y}$)

Quadratic functions ($\mathrm{Y}=\mathrm{X}^{2}$)

Speed

Quadratic functions $\left(Y=-X^{2}\right)$

Exponential functions ($\mathrm{Y}=1 / \mathrm{X}$)

REPRESENTING LINEAR FUNCTIONS

\vdots
Erasmus+
\vdots

$y=2 x+1$

TABLE OF VALUES

X	Y
0	1
1	3
-1	-1

$y=-3 x+2$

TABLE OF VALUES

X	Y
-1	5
0	2
2	-4

y-intercept

$y=1 / 2 x-2$

y-intercept: -2

slope of the line $(x): 1 / 2$

$y=-2 x+3$

y-intercept : +3

slope of the line $(x)=-2 / 1$
$y=m x+n$
三人

$y^{y-3 x+2}$

$y=2 x-1$

$y=1 / 2 x$

$y=-x-2$

And now we are going to do a kahoot!

Thank you all for listening!
 It was a pleasure being here today.

I I

THE SPANISH TEAM PRESENTS:

THE MAKING OF OUR CLASS

Choosing the subject:

Dividing the tasks:

Working on the presentation:

Practising the class:

Practising with public:

Doing the exposition in Kells to the regular students:

It was a hard work, but we are all pleased and happy with the results and the experience:)

Functions $x^{2}+34 x+c 3$
$\underbrace{x=228}_{a}\left(\sum_{x \rightarrow 2 .}^{u=4!} N 00 \cdot x-x \leqslant 549 e\right.$

Meet our group!

Anna, 16

Kasey, 16

Eabha, 16

Eva, 16
Alicia, 16

Emma, 16
Niamh, 15

Introduction

What are functions?
How can we recognise a quadratic function?

How do we solve a quadratic function?

What are the steps to figure out inputs and outputs on the calculator?

Function Notation

Key words

Domain Range
 (Inputs)

Key Words

This function takes an input value and multiplies it by 3 .

How to Graph a Quadratic Function

- Turn on calculator and press Mode Setup.
- Press 3.
- Then add in x^{2} and press equals.
- Once that is done put in the first part of the sum -3 .
- Then add in the end 3.
- We will be going up in steps of 1 so press equals.
- Then once that is all done you will have your table of results.
- Then graph your Function.

Example

$$
f(x)=x^{2}
$$

x	$f(x)$
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

Kahoot!

Group Work
 Worked
 Example

Question 14

The function $h(x)$ below gives the approximate height of the water at Howth Harbour on a particular day, from 12 noon to 5 p.m.

$$
h(x)=10 x^{2}-50 x+130
$$

where $h(x)$ is the height of the water in centimetres, and x is the time in hours after 12 noon.
(a) Draw the graph of the function
(Suggested maximum time: 20 minutes)

Source: www.theirishlandscape.com. Altered.
$h(x)=10 x^{2}-50 x+130$
on the axes below, for $0 \leq x \leq 5, x \in \mathbb{R}$.

(b) Use your graph in part (a) to answer the following questions.
(i) Find the height of the water at 12 noon.

(ii) Estimate the height of the water at its lowest point.

(iii) After 12 noon, how long did it take before the water was at its lowest point?

The graph on the right shows the approximate height of the water in centimetres at Crookhaven on a different day, from 12 noon to 6 p.m. The graph is symmetrical.
On this day, the height of the water at 12 noon was 180 cm , and the height of the water at the lowest point on the graph was 0 cm .
(c) Taking x as the time in hours after 12 noon, this graph is given by the function

$$
g(x)=a x^{2}+b x+c,
$$

where $a, b, c \in \mathbb{Z}$, and $x \in \mathbb{R}$.

Time
(hours after 12 noon)
(i) Find the value of c.
\qquad
(ii) Hence, or otherwise, find the value of a and the value of b.

Q14	Model Solution - 45 Marks	Marking Notes
(a)		Scale 15D (0, 4, 9, 13, 15) Accept correct graph without work. Award a linear graph at most Low Partial Credit. Low Partial Credit - Some work of merit, e.g. some correct substitution for x in $h(x)$. Mid Partial Credit - $h(x)$ evaluated correctly for any three values of $x \in\{0,1,2,3,4,5\}$ (Accept points shown on the graph) High Partial Credit - 6 points on the graph of $h(x)$ plotted correctly. - 5 points on the graph of $h(x)$ plotted and joined correctly Full Credit -1 - Curve with a flat bottom, otherwise correct
(b)	(i) 130 cm (ii) 67.5 cm (iii) 2.5 hours	Scale 15C (0, 5, 12, 15) Accept correct answers without work. Accept answers taken from either the graph or the function In (ii), tolerance of ± 3 units on y-axis, but not in next box up or down. Low Partial Credit - 1 part correct - Relevant line on graph (either a vertical line from the lowest point or a horizontal line from the lowest point) High Partial Credit - 2 parts correct Full Credit -1 - Unit(s) incorrect or omitted, otherwise fully correct

Q14	Model Solution - 45 Marks	Marking Notes
(c) (i) \&(ii)	Method 1 Part (i) $(0,180)$: $\begin{align*} & a(0)^{2}+b(0)+c=180 \tag{E1}\\ \Rightarrow \quad & c=180 \end{align*}$ Part (ii) $(3,0)$: $\begin{aligned} & a(3)^{2}+b(3)+180=0 \\ \Rightarrow \quad & 9 a+3 b=-180 \\ \Rightarrow \quad & 3 a+b=-60 \end{aligned}$ $(6,180)$: $\begin{aligned} & a(6)^{2}+b(6)+180=180 \text { [E3] } \\ \Rightarrow & 36 a+6 b=0 \\ \Rightarrow & 6 a+b=0 \end{aligned}$ E3-E2: $\begin{array}{ll} \Rightarrow & 3 a=60 \\ \Rightarrow & a=20 \\ \text { E2: } & b=-60-3(20) \\ \Rightarrow & b=-120 \end{array}$ OR Method 2 Quadratic has 2 roots at $x=3$ i.e. $\quad a=20, b=-120, c=180$	$15 \mathrm{D}(0,4,9,13,15)$ Accept correct answers without work. Low Partial Credit - Work of merit, e.g. identifies $(0,180),(3,0)$, or $(6,180)$; relevant substitution in $g(x)$; relates c to y-intercept; attempt at relevant shifting of graph; Mid Partial Credit - Finds c=180 - Finds E1 and E2 and E3 - Finds $a=20$ - $(x-3)^{2}$ High Partial Credit - Finds c and E2 and E3 - $20(x-3)^{2}$ - Finds a or b, having found c

Q14	Model Solution - 45 Marks	Marking Notes
(c)	Method 3	See previous page.
(i)\&(ii) cntd	The shifted quadratic graph through $(0,0)$ and $(3,180)$ is of the form $y=a x^{2}$ $\begin{aligned} & \Rightarrow \quad a(3)^{2}=180 \\ & \Rightarrow \quad a \quad=20 \end{aligned}$	
	Shift quadratic 3 units back to the right: $\begin{aligned} \Rightarrow \quad g(x) & =20(x-3)^{2} \\ & =20\left(x^{2}-6 x+9\right) \\ & =20 x^{2}-120 x+180 \end{aligned}$	
	i.e. $\quad a=20, b=-120, c=180$	

Key words

- We decided to start the lesson by recapping key words, so that the students know which words they need to know for the lesson

Evaluation:
It was good to tell the students what the key words are so they would be able to know what to expect.
We could have included more key words.

Matching Game

- We used GeoGebra to graph the functions for the matching game
- We decided to use this to start our lesson to see what prior knowledge that the students had of the topic

Evaluation:
It was a fun way to get them interacting and working together.
However, one of the graphs was wrong.

Graphing Functions

- Graphing Functions was next in our class, we decided to add this as a follow on from the matching game
- We decide to make it into a race to add excitement to the class

Click to add text

Evaluation:

It made everyone get involve and it was a different method of graphing functions for them.

We could have used graph paper and make sure they graph the function correctly, by plotting the points.

Kahoot

- We added in the Kahoot to test the student's knowledge on what we have taught them during the lesson
- We also thought that it would be a bit of fun!

Evaluation:
It was a fun way to assess what they had learned from the lesson.
If we had laptops or phones we could have had a winner.

Worked Example

- We added in the worked example to relate what we were teaching to real life examples
- It also allowed the students to recap what we had taught during the lesson

Evaluation:

It was a real-life example and their answers showed us what they had learned.
We could have swapped the Kahoot and the worked example around to finish the lesson on a fun activity.

