## To the hunt of hidden number $\Pi$ in the ZOE car...

This task in mathematics is continuing the collaborative contributions already posted online.

Imagine for a minute what human life would be if circular shapes had not been studied : no wheel, no vehicle !

Let's now find circular shapes in the ZOE car, take measurements and find again approximations of that  $\pi$  number contained in this car.

material : 4 measure tapes, calculator, posters, markers

1. Using the measure tape, measure the perimeter of each tyre and diameter of each wheel with tyre. Calculate an approximate value of  $\pi$  up to 8 significant digits. Repeat for all four tyres.

| tyre                                                             | left front tyre | right front tyre | left rear tyre | right rear tyre |
|------------------------------------------------------------------|-----------------|------------------|----------------|-----------------|
| measure of<br>circumference                                      |                 |                  |                |                 |
| measure of<br>diameter                                           |                 |                  |                |                 |
| calculation of $\pi$                                             |                 |                  |                |                 |
| approximation<br>of $\pi$ found up to<br>8 significant<br>digits |                 |                  |                |                 |

2. Repeat the procedure on the four wheel trims.

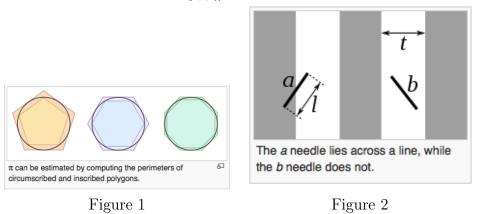
| tyre                                                             | left front wheel | right front wheel | left rear wheel | right rear wheel |
|------------------------------------------------------------------|------------------|-------------------|-----------------|------------------|
| measure of<br>circumference                                      |                  |                   |                 |                  |
| measure of<br>diameter                                           |                  |                   |                 |                  |
| calculation of $\pi$                                             |                  |                   |                 |                  |
| approximation<br>of $\pi$ found up to<br>8 significant<br>digits |                  |                   |                 |                  |

3. Repeat the procedure inside the car on the driving wheel.

**Driving wheel :** circumference is ..... diameter is ..... calculation of  $\pi$  is ..... final result : .....

- 4. Find another circular shape in the car and measure, calculate an approximation of  $\pi$
- 5. Use posters and markers to show directly onto the carbody of the car measurements, calculations and found approximation of  $\pi$
- 6. Your documentary should contain the following elements with keywords :
  - comment on your various approximations of  $\pi$  that you just found,
  - how this task is related to the math collaborative tasks posted online before this meeting,
  - additional information about that bizarre number  $\pi$ , given below. DO NOT READ, TALK!

## Key words for your presentation :


circle, circumference, perimeter, radius, diametre, centre point, endpoint, chord, area, approximate value, significant digits, decimals, decimal equivalent of a number,

## More properties about $\pi \simeq 3.1415926535897932384626433832795028841971693993751058209749445923...$

In Antiquity already this constant number lying behind all circles was puzzling. Many attempts to give an exact value to this number failed and it became easier to give it a name to speak about it. The name in use today was given by the end of the 18th century by a Swiss mathematician named Euler and was then accepted by the community of mathematicians and scientists.

- 1. Back to the Antiquity in 250 BC, Archimedes has imagined a method using regular polygons inscribed in a circle to approximate  $\pi$ , see diagram below. He found that  $\frac{223}{71} < \pi < \frac{22}{7}$ , see figure 1.
- 2.  $\pi$  is called irrational number : it is impossible to find a fraction with whole numbers that would be exactly equal to  $\pi$ . Its decimal representation never settles into a permanent repeating pattern.
- 3.  $\pi$  is called transcendant number : it is impossible to find any polynomial equation with whole numbers as coefficients whose solution would be  $\pi$ .
- 4. Moreover, this number  $\pi$  also appears in problems totally disconnected from geometry and circles. For example the game of Buffon's needles shows this surprising result.

Suppose we have a wooden floor made of parallel stripes of width t and we drop a needle of length l onto the floor. Then the probability that this needle will lie accross a line betweeen two stripes is given by  $P = \frac{2 \times l}{t \times \pi}$ , see Figure 2

