COMBINED EVENTS

mYSTERY OF THE SCIENCE

Combined Events

Combined Events helps to calculate the chance of a certain event happening． Probability is based on combinatorics．

TIPS

ก means the intersection of two sets.

U means the union of two sets.

This is called a Venn diagram, from its inventor, the English logician John Venn [1834-1923].

From elementary set theory, you know that $n[A \cup B]=n[A]+n[B]-n[A \cap B]$ So:

$P[A \cup B]=P[A] \pm P[B]-[A \cap B]$

Exercise 1

$$
\begin{gathered}
P[A \cup B]=P[A]+P[B]-[A \cap B] \\
P[A]=A / \Omega
\end{gathered}
$$

A card is selected at random from an ordinary pack of 52 cards. Find the probability that the card is
a] a king
b] a heart
c] the king of hearts
d] either a king or a heart

A-the number of favorable events
R- the number of all possible events
a) $P[K]=4 / 52=1 / 13$
b] $P[H]=13 / 52=1 / 4$
c) The event 'choosing the king of hearts' is written as $\mathrm{K} \cap \mathrm{H}$. So: $P[K \cap H]=1 / 52$

```
    There is only
one king of hearts in the pack.
```

d) Choosing the king or a heart is denoted
by the event KUH, $P(K \cup H)=P[K]+P(H)-P(K \cap H)$ $P[K \cup H]=4 / 52+13 / 52-1 / 52=4 / 13$

Exercise 2

A card is selected at random from a pack of 52 cards. Find the probability that the card is a] black
b] an honour [aces, kings, queens and jacks are honours]
c] a black honour
d] either black or an honour

$$
P[A \cup B]=P[A]+P[B]-[A \cap B]
$$

$$
P[A]=A / \Omega
$$

A-is the number of favorable events
Ω-is the number of all possible events
a] $n[A]=52: 2=26$
$P[A]=n(A) n(U)=26 / 52=1 / 2$
b] $n[A]=4 \cdot 4=16$
$P[A]=n[A] / n[U]=16 / 52=4 / 13$
c) $P[A]=8 / 52=2 / 13$
d) black -> 26 an honour-> 16
black and honour ->8
$P[A]=26 / 52+16 / 52-8 / 52=17 / 32$

Exercise 3

In a bag are 100 discs numbered 1 to 100.
A disc is selected at random from the
bag. Find the probability that the number on the selected disc is
a] even
b) a multiple of five
c] a multiple of ten
d] either even or a multiple of five

$$
\begin{aligned}
P[A \cup B]= & P[A]+P[B]-[A \cap B] \\
& P[A]=A / \Omega
\end{aligned}
$$

A-is the number of favorable events R-is the number of all possible events
a) $n[A]=50$

$$
P[A]=n[A] / n[U]=50 / 100=1 /
$$

$$
\text { b] } n[A]=20
$$

$$
2
$$

$$
P[A]=n[A] / n[U]=20 / 100=1 / 5
$$

c) $n[A]=10$

$$
P[A]=n[A] / n[U]=10 / 100=1 / 10
$$

d) even -> $\mathbf{5 0}$ multiple of five $\rightarrow \mathbf{2 0}$

Even and multiple of five $->10$
$P[A]=50 / 100+20 / 100-10 / 100=\mathbf{3 / 5}$

Thank you for joining today's class

