Equations with one variable II

Calculations involving a single variable come up in many different ways in astronomy. One way is through the relationship between a galaxy's speed and its distance, which is known as Hubbel's Law. Here are some more applications for you to solve!

Problem 1 - The blast wave from a solar storm traveled 150 million kilometers in 48 hours. Solve the equation $150,000,000=48 \mathrm{~V}$ to find the speed of the storm, V, in kilometers per hour.

Problem 2- A parsec equals 3.26 light years. Solve the equation $4.3=3.26 \mathrm{D}$ to find the distance to the star Alpha Centauri in parsecs, D, if its distance is 4.3 light years.

Problem 3 - Hubble's Law states that distant galaxies move away from the Milky Way, 75 kilometers/sec faster for every 1 million parsecs of distance. Solve the equation, $V=75 \mathrm{D}$ to find the speed of the galaxy NGC 4261 located 41 million parsecs away

Problem 4 - Convert the temperature at the surface of the Sun, 9,900 degrees Fahrenheit to an equivalent temperature in Kelvin units, T, by using $T=(F+459)$ x 5/9

Problem 5 - The Andromeda Galaxy measures 3 degrees across on the sky as seen from Earth. At a distance of 2 million light years, solve for D, the diameter of this galaxy in light years: $57.3=6,000,000 / \mathrm{D}$.

Answer Key

1 - The blast wave from a solar storm traveled 150 million kilometers in 48 hours. Solve the equation $150,000,000=48 \mathrm{~V}$ to find the speed of the storm, V , in kilometers per hour.
Answer: $150,000,000 / 48=$ V so $V=3,125,000$ kilometers/hour.

2 - A parsec equals 3.26 light years. Solve the equation $4.3=3.26 \mathrm{D}$ to find the distance to the star Alpha Centauri in parsecs, D, if its distance is 4.3 light years.
Answer: $D=4.3 / 3.26=1.3$ parsecs.

3 - Hubble's Law states that distant galaxies move away from the Milky Way, 75 kilometers/sec faster for every 1 million parsecs of distance. $\mathrm{V}=75 \times \mathrm{D}$. Solve the equation to find the speed of the galaxy NGC 4261 located $D=41$ million parsecs away
Answer: V = 75×41 so V = 3,075 kilometers/sec.

4 - Convert the temperature at the surface of the sun, 9,900 degrees Fahrenheit (F) to an equivalent temperature in Kelvin units, T, by using $T=(F+459) \times 5 / 9$
Answer: $T=(F+459) \times 5 / 9$ so $T=(9,900+459) \times 5 / 9=5,755$ Kelvins

5 - The Andromeda Galaxy measures 3 degrees across on the sky as seen from Earth. At a distance of 2 million light years, solve for D , the diameter of this galaxy in light years: $57.3=6,000,000 / \mathrm{D}$.
Answer: $D=6,000,000 / 57.3$ so $D=104,700$ light years in diameter.

