VRIJE ASO.SCHOOL		
Here we go! The creation of a mechanically controlled car		
	Test your car	

TEAM A2.	
Pupils Belgium	Pupils Sweden
- Ramona Parmentier	- Tamara
- Jacob-Toussaint Billiet	- Lucas
-	- Lovisa
	- Emelie

1. ORIENTATION

1.1. Research questions:

$>$ What will be the average speed of the mechanically controlled car?
$>$ Which changing of parameters has the best result (fastest speed)?
1.2. Hypothesis
(here you only have to make a hypothesis about question 2)
Sweden: (no changes made)
Belgium: We think that the car will start to run fast with small wheels because it takes less time to turn a lap.

2. PREPARATION

On the other document (twinspace) you see the sketches and propulsion of the car.

2.1. Parameter that will be changed:

(here you describe what you will change to the car)
Sweden: (no changes made)
Belgium: Our change to our car is: we change the wheels from big to small but the car remains the same and the stretcher too.

2.2. Method:

2.2.1. Let your car drive and measure the distance that is possible.
2.2.2. Now, for the experiment, choose a distance that is shorter then the maximum distance. Make a sign on the floor on that distance.
2.2.3. Let the car drive and measure the time.
2.2.4. Calculate the average speed.
2.2.5. Repeat this three times.
2.2.6. Now, change a parameter and repeat the whole experiment.

3. DATA ANALYSIS and DISCUSSION

3.1. Observations and Measurements:

	DISTANCE (m)	TIME (s)	AVERAGE SPEED $(\mathrm{m} / \mathrm{s})$
1	1,30	1,64	0,79
2	1,30	1,82	0,71
3	1,30	1,45	0,90

Changing of a parameter: (describe what you change)

	DISTANCE (m)	TIME (s)	AVERAGE SPEED $(\mathrm{m} / \mathrm{s})$
$1:$	1,30	1,12	1,16
$2:$	1,30	1,12	1,16
$3:$	1,30	1,08	1,20

	DISTANCE (m)	TIME (s)	AVERAGE SPEED $(\mathrm{m} / \mathrm{s})$
1	0	0	0
2	1.73	3.7799	0.4576
3			

4. REFLECTION

4.1.Conclusion: (here you discuss when the car drives fastest with or without changing)
Belgium: The car drives faster with smaller wheels.
4.2. Comparison of the results of the different countries:

