

1. Learn - what x - and y -intercepts are. The equations used in this video are $y=0.5 x-3$ and $5 x+6 y=$ 30.
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-x-and-y-intercepts/v/introduction-tointercepts
2. Pratice - Intercepts from a graph
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-x-and-y-intercepts/e/linear-functionintercepts

Determine the intercepts of the line.

3. Learn - Intercepts from an equation

Sal finds the x and y-intercepts of $-5 x+4 y=20$. Created by Sal Khan and Monterey Institute for Technology and Education.
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-x-and-y-intercepts/v/x-and-y-intercepts
4. Pratice - Intercepts from an equation
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-x-and-y-intercepts/v/x-and-yintercepts

Determine the intercepts of the line.

$$
\begin{aligned}
& y=5 x-13 \\
& y \text {-intercept: }(\square, \square) \\
& x \text {-intercept: }(\square, \square)
\end{aligned}
$$

5. Learn - Intercepts from a table

Sal finds the y-intercept of the graph of a linear function given a table of values. Created by Sal Khan. https://www.khanacademy.org/math/in-in-grade-11-ncertin-in-class11-straight-lines/copy-of-alg-x-and-y-intercepts/v/finding-intercepts-for-a-linear-function-from-a-table
6. Pratice - Intercepts from a table
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-x-and-y-intercepts/e/intercepts-from-table

This table gives a few (x, y) pairs of a line in the coordinate plane.

x	y
-12	14
-2	21
8	28

What is the x-intercept of the line?
(\square, \square)
7. Learn - Graphing using intercepts
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-x-and-y-intercepts/v/graphing-using-x-and-y-intercepts

Straight lines and Slope

1. Learn - Sal shows how to find the slope of a line.
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-slope/v/introduction-to-slope
2. Learn - Positive \& negative slope

Sal analyzes what it means for a slope to be positive or negative (spoiler: it affects the direction of the line!).
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-slope/v/positive-and-negativeslope
3. Learn - Worked example: slope from graph

The slope of a line is rise over run. Learn how to calculate the slope of the line in a graph by finding the change in y and the change in x . Created by Sal Khan and Monterey Institute for Technology and Education.
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-slope/v/slope-of-a-line-2
4. Pratice - Slope from graph

What is the slope of the line?
\square
5. Learn - Worked example: slope from two points

Find the slope of the line that goes through the ordered pairs $(4,2)$ and $(-3,16)$. Created by Sal Khan and Monterey Institute for Technology and Education.
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-slope/v/slope-of-a-line-2
6. \quad Pratice - Slope from two points
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-slope/e/slope-from-two-points
What is the slope of the line through $(6,9)$ and $(7,1)$?
Choose 1 answer:
(A) $\frac{1}{8}$
(B) 8
(C) -8
(D) $-\frac{1}{8}$
7. Learn - Slope (more examples)

Given two points on a line, you can find the slope of the line. Watch Sal doing a bunch of examples. Created by Sal Khan and CK-12 Foundation.
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-slope/v/slope-and-rate-of-change
8. Learn - Slope review

The slope of a line is a measure of its steepness. Mathematically, slope is calculated as "rise over run" (change in y divided by change in x).
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-alg-slope/a/slope-review
9. Learn - Slope of a horizontal line

When two points have the same y-value, it means they lie on a horizontal line. The slope of such a line is 0 , and you will also find this by using the slope formula. Created by Sal Khan and Monterey Institute for Technology and Education.
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-hor-and-ver-lines-alg/v/slope-of-a-line-3
10. Learn - Horizontal \& vertical lines

Worked examples identifying the equations and slope of horizontal and vertical lines.
https://www.khanacademy.org/math/in-in-grade-11-ncert/in-in-class11-straight-lines/copy-of-hor-and-ver-lines-alg/v/examples-of-slopes-and-equations-of-horizontal-and-vertical-lines
11. Pratice - Horizontal \& vertical lines

What is the equation of the line?

1. Constructs in Geogebra the functions graphs:

$$
f(x)=2 x, \quad g(x)=-x, \quad h(x)=10 x, \quad i(x)=\frac{1}{2} x, \quad j(x)=-5 x \quad \text { e } \quad k(x)=2 .
$$

1.1. Sketch the graphics:

						(x)	=											(x	-											$x)$	$=$	$10 x$			
	ap													ph																					
							y												y												y				
						5												5												5					
						4												4												4					
						3												3												3					
						2												2												2					
						1						x						1						X						1					X
-6	- 5	5	-4	-3	- 2	- 1	1	2	3	4	5	$\xrightarrow{6}$	-6	. 5	-4	-3	-2	- 1	1	2	3	4	5	$\xrightarrow{6}$	- 6	. 5	-4	- 3	- 2	1	1	2	3	4	$\stackrel{5}{6}$
						-2												-2												-2					
						-3												-3												-3					
						4												-4												-4					
						- 5												-5												. 5					
						-6												-6												-6					
Slope signal: Monotony:													Slope signal: \qquad Monotony: \qquad												Slope signal: \qquad Monotony: \qquad										

					(x)	$=$	$\frac{1}{2} x$										$x)$											$k(x)$	=				
	raph																																
					${ }^{6}$	y											${ }^{6}$	y											y				
					5												5											5					
					4												4											4					
					3												3											3					
					2												2											2					
					1						x						1						x					1					X
-6	- 5	-4	-3	-2	- 1	1	2	3	4	5	6	-6	. 5	-4	-3	-2	- 1	1	2	3	4	5	${ }_{6}$	-6	. 5	- 4	. 3	$2{ }^{-1}$	1	2	3	4	${ }_{5}{ }^{6}$
					-2												-2											-2					
					$\cdot 3$												-3											- 3					
					-4												-4											. 4					
					-5												-5											. 5					
					. 6												-6											. 6					
Slope signal: Monotony:												Slope signal: \qquad Monotony: \qquad												Slope signal: \qquad Monotony: \qquad									

1.2. How does parameter variation a affect Graphs in the family of functions defined by $y=a x$.

- What happens when we increase the absolute value of a ?
- What happens when we decrease the absolute value of a?
1.3. What happens to Graph when the real number a is:
- Positive? Negative? Null?

Smart School for Smart Age
Lesson 4 - Geogebra

1. Constructs in Geogebra the functions graphs:

$$
f(x)=2 x, \quad g(x)=2 x+3 \mathrm{e} \quad h(x)=2 x-1 .
$$

1.1. Sketch the graphics:

1.2. Complete the following table:

	$f(x)=2 x$	$g(x)=2 x+3$	$h(x)=2 x-1$
Slope $a:$			
y-intercept: $b \quad P(0 ; b)$			
x-intercept $Q(x, 0)$			
Monotony (ascending / descending)			

1.3. What is the relative position of three straight.
\square

1. Constructs in Geogebra the functions graphs:

$$
f(x)=-x, g(x)=-x+3 \text { e } h(x)=-x-1
$$

1.1. Sketch the graphics:

1.2. Complete the following table:

	$f(x)=-x$	$g(x)=-x+3$	$h(x)=-x-1$
Slope $a:$			
y - intercept: $b \quad P(0 ; b)$			
x - intercept $Q(x, 0)$			
Monotony (ascending / descending)			

1.3. What is the relative position of three straight.
\square
1.4. How does the variation of parameter b affect the Graphs of the family of functions defined by $y=a x+b$.

- What happens to the line when we increase the value of b ?
- What happens to the line when we decrease the value of b ?

Equation of a Straight Line

1．For the straight line $y=-2 x+3$ ，what are：
a）the slope
b）the y－intercept？a）Slope＝ 2
b）y－intercept $=(0,-3)$a）Slope $=-2$
b）y－intercept $=(0,3)$
a）Slope＝ 3
b）y－intercept $=(0,-2)$
a）Slope $=-3$
b）y－intercept $=(0,2)$
2．What is the equation of the straight line shown in the diagram？
（A）$y=x-1$
（B）$y=-x+1$
（C）$y=2 x$
（D）$y=2 x+1$

3．What is the equation of the following line？
（A）$y=2 x+1$
（B）$y=-x+1$
（C）$y=-2 x+1$
（D）$y=0,5 x+1$
（E）$y=x+1$

4．For the straight line $x=2 y-3$ ，what are：
a）the slope
b）the y－intercept？
A）Slope $=2$ and y－intercept $=(0,-3)$
（B）Slope $=1 / 2$ and y－intercept $=\left(0,1 \frac{1}{2}\right)$
（C）Slope $=-1 / 2$ and y－intercept $=(0,11 / 2)$
（D）Slope $=1 / 2$ and y－intercept $=\left(0,-1 \frac{1}{2}\right)$
5. What is the equation of the straight line shown in the diagram?
(A) $x=2$
(B) $y=2 x+2$
(C) $y=2$
(D) $y=2 x$
(E) $y=-2 x+2$

6. What is the equation of the straight line shown in the diagram?
(A) $y=-2 / 3 x+2$
(B) $y=2 x-2 / 3$
(C) $y=x+2$
(D) $y=3 x+2$
(E) $y=-3 x+2$

